Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.407
Filter
1.
Neural Regen Res ; 20(5): 1455-1466, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075912

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear. In this study, we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury. We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP), increased neuronal apoptosis, and induced autophagy. Furthermore, inhibition of ER stress using inhibitors or by siRNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis, indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy. Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis, indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury. Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy, and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.

2.
Protein Expr Purif ; 225: 106583, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39168394

ABSTRACT

In recombinant protein purification, differences in isoelectric point (pI)/surface charge and hydrophobicity between the product and byproducts generally form the basis for separation. For bispecific antibodies (bsAbs), in many cases the physicochemical difference between product and byproducts is subtle, making byproduct removal considerably challenging. In a previous report, with a bsAb case study, we showed that partition coefficient (Kp) screening for the product and byproducts under various conditions facilitated finding conditions under which effective separation of two difficult-to-remove byproducts was achieved by anion exchange (AEX) chromatography. In the current work, as a follow-up study, we demonstrated that the same approach enabled identification of conditions allowing equally good byproduct removal by mixed-mode chromatography with remarkably improved yield. Results from the current and previous studies proved that separation factor determination based on Kp screening for product and byproduct is an effective approach for finding conditions enabling efficient and maximum byproduct removal, especially in challenging cases.


Subject(s)
Antibodies, Bispecific , Recombinant Proteins , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Chromatography, Ion Exchange/methods , Humans
3.
Free Radic Biol Med ; 224: 554-563, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293609

ABSTRACT

OBJECTIVE: To investigate the protective effect of lanthanum chloride on kidney injury in chronic kidney disease and its mechanism. METHODS: 1. Patients with CKD stage 2-5 were selected to analyze the effect of lanthanum-containing preparations on CKD. 2. Sixty healthy male Wistar rats were randomly divided into control group, model group, lanthanum chloride groups (0.03 ng/kg, 0.1 ng/kg, 0.3 ng/kg, q.3d., i.v.), and lanthanum carbonate group (0.3 g/kg, q.d., p.o.). The model group was given 2 % adenine suspension (200 mg/kg, q.d., p.o.) for the first two weeks, followed by adenine (200 mg/kg, b.i.d., p.o.) for 2 weeks, and all animals were sacrificed after eight weeks of administration. 3. The serum and kidneys of rats in each group were collected to detect the oxidative stress indicators and the expressions of LC3B-Ⅱ/Ⅰ, p62, Bcl-2, Bax, Caspase-3 and Cleaved Caspase-3. 4. Human renal tubular epithelial cells (HK-2 cells) were divided into control group, model group, lanthanum chloride group, pyrophosphate (PPI) group, chloroquine (CQ) group, rapamycin group, doxorubicin (DOX) group and N-acetyl-L-cysteine (NAC) group. The mitochondrial status, mitophagy and apoptosis levels were detected. RESULTS: 1.Lanthanum-containing preparations can significantly reduce the biochemical indexes of kidney injury in patients with CKD. 2. In the model group, the glomerular and renal tubular edema, the mitochondria were short and round, and the expression of LC3B-Ⅱ/Ⅰ and Bax increased, while the expression of P62, Bcl-2 and Caspase-3 decreased, and there was a significant improvement in the administration group, especially the 0.1 ng/kg group and lanthanum carbonate group. 3. In the HK-2 cell model group, mitochondrial membrane potential decreased, morphology changed and the results were reversed by lanthanum chloride. CONCLUSION: Lanthanum chloride may alter the morphology of nano-hydroxyapatite, thereby inhibiting its induced mitophagy and mitochondria-mediated apoptosis, and ultimately improve CKD renal injury effectively.

4.
J Agric Food Chem ; 72(37): 20241-20260, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39253980

ABSTRACT

The development and investigation of innovative nanomaterials stand poised to advance technological progress and meet the contemporary demand for efficient, environmentally friendly, and intelligent products. Hollow nanostructures (HNS), characterized by their hollow architecture, exhibit diverse properties such as expansive specific surface area, low density, high drug-carrying capacity, and customizable structures. These elaborated structures, encompass nanospheres, nanoboxes, rings, cubes, and nanowires, have wide-ranging applications in biomedicine, materials chemistry, food industry, and environmental science. Herein, HNS and their cutting-edge synthesis methods, including solvothermal methods, liquid-interface assembly methods, and the self-templating methods are discussed in-depth. Meanwhile, the potential applications of HNS in food and biomedicine such as food packing, biosensor, and drug delivery over the past three years are summarized, together with a prospective view of future research directions and challenges. This review will offer new insights into designing next generation of hollow nanomaterials for food and biomedicine applications.


Subject(s)
Nanostructures , Nanostructures/chemistry , Nanotechnology/methods , Drug Delivery Systems/instrumentation , Humans , Food Technology/methods , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
5.
Drug Des Devel Ther ; 18: 3925-3938, 2024.
Article in English | MEDLINE | ID: mdl-39247793

ABSTRACT

Background: GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice. Methods: Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1ß, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1ß were measured using Western blotting. Results: First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1ß levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1ß, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway. Conclusion: Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NF­κB signaling pathway in PCOS mice.


Subject(s)
Glucagon-Like Peptide-1 Receptor Agonists , Glucagon-Like Peptides , Inflammation , Polycystic Ovary Syndrome , Signal Transduction , Animals , Female , Mice , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Glucagon-Like Peptides/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Signal Transduction/drug effects , Sirtuin 1/metabolism , Glucagon-Like Peptide-1 Receptor Agonists/pharmacology
6.
World J Emerg Med ; 15(5): 379-385, 2024.
Article in English | MEDLINE | ID: mdl-39290601

ABSTRACT

BACKGROUND: Sepsis is one of the main causes of mortality in intensive care units (ICUs). Early prediction is critical for reducing injury. As approximately 36% of sepsis occur within 24 h after emergency department (ED) admission in Medical Information Mart for Intensive Care (MIMIC-IV), a prediction system for the ED triage stage would be helpful. Previous methods such as the quick Sequential Organ Failure Assessment (qSOFA) are more suitable for screening than for prediction in the ED, and we aimed to find a light-weight, convenient prediction method through machine learning. METHODS: We accessed the MIMIC-IV for sepsis patient data in the EDs. Our dataset comprised demographic information, vital signs, and synthetic features. Extreme Gradient Boosting (XGBoost) was used to predict the risk of developing sepsis within 24 h after ED admission. Additionally, SHapley Additive exPlanations (SHAP) was employed to provide a comprehensive interpretation of the model's results. Ten percent of the patients were randomly selected as the testing set, while the remaining patients were used for training with 10-fold cross-validation. RESULTS: For 10-fold cross-validation on 14,957 samples, we reached an accuracy of 84.1%±0.3% and an area under the receiver operating characteristic (ROC) curve of 0.92±0.02. The model achieved similar performance on the testing set of 1,662 patients. SHAP values showed that the five most important features were acuity, arrival transportation, age, shock index, and respiratory rate. CONCLUSION: Machine learning models such as XGBoost may be used for sepsis prediction using only a small amount of data conveniently collected in the ED triage stage. This may help reduce workload in the ED and warn medical workers against the risk of sepsis in advance.

7.
Front Plant Sci ; 15: 1445418, 2024.
Article in English | MEDLINE | ID: mdl-39258298

ABSTRACT

Background: Cotton pests have a major impact on cotton quality and yield during cotton production and cultivation. With the rapid development of agricultural intelligence, the accurate classification of cotton pests is a key factor in realizing the precise application of medicines by utilize unmanned aerial vehicles (UAVs), large application devices and other equipment. Methods: In this study, a cotton insect pest classification model based on improved Swin Transformer is proposed. The model introduces the residual module, skip connection, into Swin Transformer to improve the problem that pest features are easily confused in complex backgrounds leading to poor classification accuracy, and to enhance the recognition of cotton pests. In this study, 2705 leaf images of cotton insect pests (including three insect pests, cotton aphids, cotton mirids and cotton leaf mites) were collected in the field, and after image preprocessing and data augmentation operations, model training was performed. Results: The test results proved that the accuracy of the improved model compared to the original model increased from 94.6% to 97.4%, and the prediction time for a single image was 0.00434s. The improved Swin Transformer model was compared with seven kinds of classification models (VGG11, VGG11-bn, Resnet18, MobilenetV2, VIT, Swin Transformer small, and Swin Transformer base), and the model accuracy was increased respectively by 0.5%, 4.7%, 2.2%, 2.5%, 6.3%, 7.9%, 8.0%. Discussion: Therefore, this study demonstrates that the improved Swin Transformer model significantly improves the accuracy and efficiency of cotton pest detection compared with other classification models, and can be deployed on edge devices such as utilize unmanned aerial vehicles (UAVs), thus providing an important technological support and theoretical basis for cotton pest control and precision drug application.

8.
Medicine (Baltimore) ; 103(37): e39596, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287279

ABSTRACT

Endometrial cancer (EC) is the most prevalent gynecologic malignancy, with a higher risk in obese women, suggesting the potential involvement of gut microbiota in the progression of EC. However, there is no direct evidence of a connection between EC and the human gut microbiota. Using metagenomic sequencing, we investigated the relationship between gut microbiome imbalance and cancer development in patients with EC. In this prospective case-control study, we included 15 patients with EC based on endometrial biopsy in the case group and 15 women admitted to the hospital for female pelvic floor issues during the same time who did not have endometrial lesions from January 2023 to June 2023 in control group. The microbiota structure of EC cases and controls without benign or malignant endometrial lesions during the same time period was analyzed using metagenomic sequencing technology. We employed Alpha diversity analysis to reflect the richness and diversity of microbial communities. Statistical algorithm Bray-Curtis was utilized to calculate pairwise distances between samples, obtaining a beta diversity distance matrix. Subsequently, hierarchical clustering analysis was conducted based on the distance matrix. The results showed that the composition of bacterial colonies in both groups was dominated by Firmicutes, which had a higher proportion in the control group, followed by Bacteroidetes in the control group and Proteobacteria and Bacteroidetes in the case group. The abundance of Klebsiella (P = .02) was significantly higher, and the abundance of Alistipes (P = .04), Anearobutyricum (P = .01), and bacteria in Firmicutes such as Oscillospira and Catenibacterium was markedly lower in the case group than in the control group. These results demonstrated conclusively that a gut microbiome imbalance was associated with the development of EC.


Subject(s)
Endometrial Neoplasms , Gastrointestinal Microbiome , Metagenomics , Humans , Female , Endometrial Neoplasms/microbiology , Endometrial Neoplasms/genetics , Gastrointestinal Microbiome/genetics , Case-Control Studies , Middle Aged , Prospective Studies , Metagenomics/methods , Aged , Adult
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125145, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39299072

ABSTRACT

Luminous imaging of latent fingerprints (LFPs) necessitates the possession of high-brightness aggregation-state luminescence by developers to ensure sufficient imaging contrast and resolution. A novel strategy involving incremental rotor modification is presented for AIE activation of the iridium developer. The rotor proliferation prominently improves the rotational activity of groups and facilitates high-efficiency RIM, thereby prompting the AIE activation of iridium developer with high luminous efficiency. Subsequently, a prompt, high-contrast, and robust LFP imaging protocol is developed utilizing the high-brightness AIE-active iridium developer. This innovative protocol realizes the luminous imaging and quantification of microscopic features in fingerprint ridges and furrows, including ridge widths, edge morphology of ridges, included angles, pores, and pore pitches with exceptional imaging contrast and refined detail resolution. Moreover, it allows for accurate identification of individual traits across diverse substrates without any pre-/post-processing to LFPs. The high-brightness AIE-active iridium developer provides outstanding aging resistance to developed fingerprints, thereby strongly supporting the acquisition, transfer, and preservation of fingerprint evidence. The luminous imaging protocol of LFPs based on high-brightness AIE exhibits robust adaptability to actual scenes and offers a premium scheme for facilitating forensic investigation.

10.
Front Cell Dev Biol ; 12: 1444198, 2024.
Article in English | MEDLINE | ID: mdl-39300994

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and its more advanced form, non-alcoholic steatohepatitis (NASH), have become global health challenges with significant morbidity and mortality rates. NAFLD encompasses several liver diseases, ranging from simple steatosis to more severe inflammatory and fibrotic forms. Ultimately, this can lead to liver cirrhosis and hepatocellular carcinoma. The intricate role of hepatic macrophages, particularly Kupffer cells (KCs) and monocyte-derived macrophages (MoMFs), in the pathogenesis of NAFLD and NASH, has received increasing attention. Hepatic macrophages can interact with hepatocytes, hepatic stellate cells, and endothelial cells, playing a crucial role in maintaining homeostasis. Paradoxically, they also participate in the pathogenesis of some liver diseases. This review highlights the fundamental role of hepatic macrophages in the pathogenesis of NAFLD and NASH, emphasizing their plasticity and contribution to inflammation and fibrosis, and hopes to provide ideas for subsequent experimental research and clinical treatment.

11.
Plant J ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269929

ABSTRACT

The dynamic balance between the self-renewal and differentiation of stem cells in plants is precisely regulated by a series of developmental regulated genes that exhibit spatiotemporal-specific expression patterns. Several studies have demonstrated that the WOX family transcription factors play critical roles in maintaining the identity of stem cells in Arabidopsis thaliana. In this study, we obtained amiR-WOX9 transgenic plants, which displayed terminating prematurely of shoot apical meristem (SAM) development, along with alterations in inflorescence meristem and flower development. The phenotype of amiR-WOX9 plants exhibited similarities to that of wus-101 mutant, characterized by a stop-and-go growth pattern. It was also found that the expression of WUS in amiR-WOX9 lines was decreased significantly, while in UBQ10::WOX9-GFP transgenic plants, the WUS expression was increased significantly despite no substantial alteration in meristem size compared to Col. Therefore, these data substantiated the indispensable role of WOX9 in maintaining the proper expression of WUS. Further investigations unveiled the direct binding of WOX9 to the WUS promoter via the TAAT motif, thereby activating its expression. It was also found that WUS recognized identical the same TAAT motif cis-elements in its own promoter, thereby repress self-expression. Next, we successfully identified a physical interaction between WOX9 and WUS, and verified that it was harmful to the expression of WUS. Finally, our experimental findings demonstrate that WOX9 was responsible for the direct activating of WUS, which however was interfered by the ways of WUS binding its own promoter and the interaction of WUS and WOX9, thereby ensuring the appropriate expression pattern of WUS and then the stem cell stability. This study contributes to an enhanced comprehension of the regulatory network of the WOX9-WUS module in maintaining the equilibrium of the SAM.

12.
Int J Biol Macromol ; 279(Pt 2): 135163, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218174

ABSTRACT

The preparation of stable and efficient cellulose-based oil/water separation membranes is of great significance in solving the problem of industrial oily wastewater. Herein, rod-like hydroxyapatite (HAP) modified microfibrillated celluloses (MFCs) are used to form the fibrous framework to produce a microporous PDMS-MFC-HAP membrane. The membrane shows good superhydrophobicity with a water contact angle of 151.6°. It exhibits the oil-water separation performance for various water-in-oil emulsions. The separation flux of the membrane is up to 3665.3 L·m-2·h-1·bar-1 under 0.5 bar pressure with a separation efficiency of over 99.6 %. The PDMS-MFC-HAP membrane could maintain a high separation efficiency of 98.6 % after 20 cycles. This study provides a simple and effective method to fabricate cellulose-based superhydrophobic membranes, which have a greater potential to achieve oil-water separation for oily wastewater treatment with high efficiency.

13.
Plant Cell Environ ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253998

ABSTRACT

Asymmetric warming refers to the difference between the increase in daytime maximum temperature and the increase in nighttime minimum temperature and has been documented in temperate regions. However, its impacts on seedling growth have been largely ignored. In this study, seedlings of a widely distributed tree species, Acer mono Maxim., were exposed to both symmetric warming (SW) and asymmetric warming scenarios (day warming [DW], night warming [NW] and diurnal asymmetric warming [DAW]). Compared to control, all warming scenarios were found to enhance belowground biomass. DW promoted the seedling growth, while NW reduced the stem biomass. DAW did not impact the total biomass relative to the control. Compared to SW, DAW advanced phenology, increased indole-3-acetic acid content and chlorophyll content, which enhanced total biomass and stored more NSC in the root. Future DAW would be not beneficial to the growth of A. mono seedlings by comparing with the control. This research encourages further exploration of tree growth experiments under asymmetric warming conditions, as most studies tend to underestimate the warming effects on plant growth by focusing on SW. Incorporating the responses of seedling physiology and growth to non-uniform diurnal warming into earth system models is crucial for more accurately predicting carbon and energy balances in a warmer world.

14.
Heliyon ; 10(16): e36305, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224267

ABSTRACT

Objective: This study aims to examine the ultrasonographic features of secondary thyroid malignancies and compare the diagnostic efficacy of fine-needle aspiration (FNA) and core needle biopsy (CNB) in this condition. Methods: A retrospective analysis was conducted on 29 patients with secondary thyroid malignancies treated at our center between July 2011 and October 2022. Ultrasound images and clinical data were analyzed, and the lesions were classified according to the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS). Results: Among the 29 patients studied, primary tumor sites were predominantly the esophagus, lung, and nasopharynx. Comprehensive ultrasound data was available for 28 of these patients, revealing nodular lesions in 24 cases and diffuse lesions in 4 cases. Nodular lesions were predominantly solid or nearly solid hypoechoic nodules with parallel growth and extrathyroidal extension features, with a few showing macrocalcifications. Most patients had varying degrees of metastasis to neck lymph nodes. FNA accurately diagnosed 31.6 % of the lesions as secondary thyroid malignancies, while 5.3 % were misdiagnosed as papillary thyroid carcinoma (PTC). However, CNB demonstrated 100 % reliability in diagnosing secondary thyroid malignancies. Conclusion: This study's categorization of secondary thyroid malignancy ultrasonographic features identifies nodular and diffuse patterns, with the application of ACR TI-RADS proving effective for nodular types. In detecting these lesions, CNB demonstrates superior sensitivity compared to FNA. Thus, in cases of thyroid lesions suspected to be malignant, particularly with enlarged neck lymph nodes and in patients with a history of malignancy, CNB is recommended as the diagnostic method of choice.

15.
JHEP Rep ; 6(9): 101144, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39253701

ABSTRACT

Background & Aims: The expression of HBsAg from integrated HBV DNA limits the achievement of functional cure for chronic hepatitis B. Thus, characterising the unique expression and secretion of HBsAg derived from integrated HBV DNA is of clinical significance. Methods: A total of 563 treatment-naive patients and 62 functionally cured patients were enrolled, and HBsAg and HBcAg immunohistochemistry of their liver biopsy tissues was conducted followed by semi-quantitative analysis. Then, based on stratified analysis of HBeAg-positive and -negative patients, long-read RNA sequencing analysis, as well as an in vitro HBV integration model, we explored the HBsAg secretion characteristics of integrated HBV DNA and underlying mechanisms. Results: In contrast to the significantly lower serum HBsAg levels, no significant decrease of intrahepatic HBsAg protein was observed in HBeAg-negative patients, as compared with HBeAg-positive patients. The results of long-read RNA sequencing of liver tissues from patients with chronic HBV infection and in vitro studies using integrated HBV DNA mimicking dslDNA plasmid revealed that, the lower HBsAg secretion efficiency seen in HBeAg-negative patients might be attributed to an increased proportion of preS1 mRNA derived from integrated HBV DNA instead of covalently closed circular DNA. The latter resulted in an increased L-HBsAg proportion and impaired HBsAg secretion. Enhancer 1 (EnhI) in integrated HBV DNA could retarget preS1 (SP1) and preS2 (SP2) promoters to disrupt their transcriptional activity balance. Conclusions: The secretion of HBsAg originating from integrated HBV DNA was impaired. Mechanistically, functional deficiency of core promoter leads to retargeting of EnhI and thus uneven activation of the SP1 over the SP2 promoter, resulting in an increase in the proportion of L-HBsAg. Impact and implications: Integrated hepatitis B virus (HBV) DNA can serve as an important reservoir for HBV surface antigen (HBsAg) expression, and this limits the achievement of a functional cure. This study revealed that secretion efficiency is lower for HBsAg derived from integrated HBV DNA than HBsAg derived from covalently closed circular DNA, as determined by the unique sequence features of integrated HBV DNA. This study can broaden our understanding of the role of HBV integration and shed new light on antiviral strategies to facilitate a functional cure. We believe our results are of great general interest to a broad audience, including patients and patient organisations, the medical community, academia, the life science industry and the public.

16.
Food Chem ; 463(Pt 1): 141049, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39260178

ABSTRACT

Patulin (PAT), a foodborne toxin, causes severe intestinal damage. To mitigate this health threat, mice were pretreated with apple polyphenols (AP) in their drinking water (0.01 % and 0.05 %) for eight weeks, followed by exposure to PAT during the last two weeks. Subsequently, histopathological and biochemical evaluations of intestinal tissues were conducted, alongside assessments of alterations in gut microbiota, colonic content metabolome, and hepatic metabolome. Consequently, AP alleviated PAT-induced villus and crypt injury, mucus depletion, GSH level decline, GSH-Px and SOD activity reduction, and MPO activity elevation. Notably, AP counteracted PAT-mediated microbiota disruptions and promoted the abundance of beneficial bacteria (Dubosiella, Akkermansia, Lachnospiraceae, and Lactobacillus). Furthermore, AP counteracted PAT-induced metabolic disorders in the colonic contents and liver. Ultimately, AP prevented intestinal injury by regulating the gut microbiota and amino acid, purine, butanoate, and glycerophospholipid metabolism in the gut-liver axis. These results underscore the potential of AP to prevent foodborne toxin-induced intestinal damage.

17.
J Nutr Biochem ; : 109766, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260735

ABSTRACT

BACKGROUND: Long-term dysfunction of glucose metabolism causes cardiac dysfunction called diabetic cardiomyopathy (DCM). MATERIAL AND METHODS: To investigate the effect and underlying mechanism of RS on the process of DCM, mouse models induced by a high-fat diet (HFD) and streptozotocin (STZ) were fed RS (2 g/kg/day) and vehicle treatment (by oral gavage) for 14 weeks. Various analyses, including qRT-PCR, western blot, immunofluorescence staining, histology staining, cardiac function, and diversity detection of intestinal microbiota were performed. RESULTS: RS intervention could directly improve myocardial fibrosis, hypertrophy, apoptosis, and cardiac insufficiency in DCM. These beneficial effects may be achieved by elevating the expression of IGF-1, activating the ERK phosphorylation. Furthermore, by carrying out nano LC-MS/MS analyses and 16S rDNA sequencing, we found RS might primarily affect proteins in the cytoplasm involved in post-translational modification, protein conversion, and signal transduction mechanisms. RS altered intestinal microbiota and improved intestinal mucosal permeability towards a favorable direction in DCM. CONCLUSION: This multi-dimensional assessment of RS suggests that might be a promising approach towards the treatment of DCM.

18.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274920

ABSTRACT

OBJECTIVE: The aim of this study was to optimize the formulation of a C60-modified self-microemulsifying drug delivery system loaded with triptolide (C60-SMEDDS/TP) and evaluate the cytoprotective effect of the C60-SMEDDS/TP on normal human cells. RESULTS: The C60-SMEDDS/TP exhibited rapid emulsification, an optimal particle size distribution of 50 ± 0.19 nm (PDI 0.211 ± 0.049), and a near-neutral zeta potential of -1.60 mV. The release kinetics of TP from the C60-SMEDDS/TP exhibited a sustained release profile and followed pseudo-first-order release kinetics. Cellular proliferation and apoptosis analysis indicated that the C60-SMEDDS/TP (with a mass ratio of TP: DSPE-PEG-C60 = 1:10) exhibited lower toxicity towards L02 and GES-1 cells. This was demonstrated by a higher IC50 (40.88 nM on L02 cells and 17.22 nM on GES-1 cells) compared to free TP (21.3 nM and 11.1 nM), and a lower apoptosis rate (20.8% on L02 cells and 26.3% on GES-1 cells, respectively) compared to free TP (50.5% and 47.0%) at a concentration of 50 nM. In comparison to the free TP group, L02 cells and GES-1 cells exposed to the C60-SMEDDS/TP exhibited a significant decrease in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM). On the other hand, the C60-SMEDDS/TP demonstrated a similar inhibitory effect on BEL-7402 cells (IC50 = 28.9 nM) and HepG2 cells (IC50 = 107.6 nM), comparable to that of the free TP (27.2 nM and 90.4 nM). The C60-SMEDDS/TP group also exhibited a similar intracellular level of ROS and mitochondrial membrane potential compared to the SMEDDS/TP and free TP groups. METHOD: Fullerenol-Grafted Distearoyl Phosphatidylethanolamine-Polyethylene Glycol (DSPE-PEG-C60) was synthesized and applied in the self-microemulsifying drug delivery system. The C60-SMEDDS/TP was formulated using Cremophor EL, medium-chain triglycerides (MCT), PEG-400, and DSPE-PEG-C60, and loaded with triptolide (TP). The toxicity and bioactivity of the C60-SMEDDS/TP were assessed using normal human liver cell lines (L02 cells), normal human gastric mucosal epithelial cell lines (GES-1 cells), and liver cancer cell lines (BEL-7402 cells and HepG2 cells). The production of reactive oxygen species (ROS) after the C60-SMEDDS/TP treatment was assessed using 2',7'-dichlorofluorescein diacetate (DCFDA) staining. The alterations in mitochondrial membrane potential (ΔψM) were assessed by measuring JC-1 fluorescence. CONCLUSIONS: The cytoprotection provided by the C60-SMEDDS/TP favored normal cells (L02 and GES-1) over tumor cells (BEL-7402 and HepG2 cells) in vitro. This suggests a promising approach for the safe and effective treatment of TP.


Subject(s)
Apoptosis , Diterpenes , Drug Delivery Systems , Emulsions , Epoxy Compounds , Fullerenes , Phenanthrenes , Humans , Diterpenes/pharmacology , Diterpenes/chemistry , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Fullerenes/chemistry , Fullerenes/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Cytoprotection/drug effects , Particle Size , Cell Proliferation/drug effects
19.
Cell Rep ; 43(9): 114739, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39276350

ABSTRACT

FOXA1 serves as a crucial pioneer transcription factor during developmental processes and plays a pivotal role as a mitotic bookmarking factor to perpetuate gene expression profiles and maintain cellular identity. During mitosis, the majority of FOXA1 dissociates from specific DNA binding sites and redistributes to non-specific binding sites; however, the regulatory mechanisms governing molecular dynamics and activity of FOXA1 remain elusive. Here, we show that mitotic kinase Aurora B specifies the different DNA binding modes of FOXA1 and guides FOXA1 biomolecular condensation in mitosis. Mechanistically, Aurora B kinase phosphorylates FOXA1 at Serine 221 (S221) to liberate the specific, but not the non-specific, DNA binding. Interestingly, the phosphorylation of S221 attenuates the FOXA1 condensation that requires specific DNA binding. Importantly, perturbation of the dynamic phosphorylation impairs accurate gene reactivation and cell proliferation, suggesting that reversible mitotic protein phosphorylation emerges as a fundamental mechanism for the spatiotemporal control of mitotic bookmarking.

20.
J Biol Chem ; : 107767, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276939

ABSTRACT

Trace elemental iron is an essential nutrient that participates in diverse metabolic processes. Dysregulation of cellular iron homeostasis, both iron deficiency and iron overload, is detrimental and tightly associated with diseases pathogenesis. IRPs-IREs system locates at the center for iron homeostasis regulation. Additionally, ferritinophagy, the autophagy-dependent ferritin catabolism for iron recycle, is emerging as a novel mechanism for iron homeostasis regulation. It is still unclear whether IRPs-IREs system and ferritinophagy are synergistic or redundant in determining iron homeostasis. Here we report that IRP2, but not IRP1, is indispensable for ferritinophagy in response to iron depletion. Mechanistically, IRP2 ablation results in compromised AMPK activation and defective ATG9A endosomal trafficking, leading to the decreased engulfment of NCOA4-ferritin complex by endosomes and the subsequent dysregulated endosomal microferritinophagy. Moreover, this defective endosomal microferritinophagy exacerbates DNA damage and reduces colony formation in IRP2 depleted cells. Collectively, this study expands the physiological function of IRP2 in endosomal microferritinophagy and highlights a potential crosstalk between IRPs-IREs and ferritinophagy in manipulating iron homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL