Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 559, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702644

ABSTRACT

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Integrin alpha2 , Integrin alpha3 , Mucin-1 , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Female , Integrin alpha2/metabolism , Integrin alpha2/genetics , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Mucin-1/metabolism , Mucin-1/genetics , Mice , Phosphorylation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , MAP Kinase Signaling System , Mice, Nude , Extracellular Signal-Regulated MAP Kinases/metabolism
2.
Reprod Sci ; 30(8): 2573-2579, 2023 08.
Article in English | MEDLINE | ID: mdl-36854822

ABSTRACT

It is widely accepted that kisspeptin plays an integral role in the regulation of reproduction. Genetic variations in the KISS1 gene have been frequently reported to be linked to reproductive diseases, but there is still a lack of data on the association between KISS1 variations and female reproductive disorders. The present study aimed to examine the association of three missense SNPs in the KISS1 gene including rs12998, rs35431622, and rs4889 in association with idiopathic recurrent pregnancy loss (iRPL). A total of 720 individuals were recruited in this study. The DNA from the blood sample was extracted and genotyped using the PCR method. Haplotype and linkage disequilibrium (LD) have also been analyzed. The results of this study suggested that rs12998 G > A and rs4889 C > G had a significant association with iRPL (p < 0.05); while rs35431622 A > G didn't indicate any association with iRPL. A significant association was also found for three haplotypes including C-A-A, G-G-G, and G-G-A in this population. The analysis also showed a significant LD between rs12998 and rs35431622 (P < 0.0005). The rs12998 G > A and rs4889 C > G variants of KISS1 are linked to unexplained recurrent pregnancy loss and may be risk factors for this disease.


Subject(s)
Abortion, Habitual , Kisspeptins , Pregnancy , Humans , Female , Kisspeptins/genetics , Genotype , Polymorphism, Single Nucleotide , Genes, Tumor Suppressor , Abortion, Habitual/genetics
3.
J Cancer Res Ther ; 14(7): 1469-1475, 2018.
Article in English | MEDLINE | ID: mdl-30589025

ABSTRACT

Increasing studies have demonstrated that most tumors consisted a subpopulation of cells with stem cell properties, known as cancer stem cells (CSCs). Accumulating evidence indicated that CSCs may be critical driving force for several types of cancer. Hence, it was necessary to develop therapeutic approaches specifically targeting CSCs. In this review, first, the biological properties of CSCs were introduced, including the self-renewal and differentiation, high tumorigenesis and invasiveness, resistance to chemotherapy and radiotherapy, genetic and epigenetic variations. Meanwhile, CSCs-targeted therapeutic strategies were summarized, including targeting cell surface markers, signaling pathways, CSC niches, differentiation therapy, and drug resistance for CSCs. Furthermore, clinical trials on anti-CSCs therapies supported the efficacy of these therapies, as well as their combination with conventional chemotherapy and radiotherapy. CSCs could be significantly eradicated, eventually resulting in inhibited tumor growth, metastasis, and recurrence. Thus, selectively targeting CSCs with various agents may be a novel and promising therapeutic strategy against cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Biomedical Research , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Clinical Trials as Topic , Epigenesis, Genetic/drug effects , Genetic Variation , Humans , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Stem Cell Niche/drug effects , Treatment Outcome
4.
J Pharm Biomed Anal ; 119: 99-103, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26678176

ABSTRACT

A rapid, sensitive and selective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the determination and pharmacokinetic investigation of parthenolide in rat plasma. Sample preparation was accomplished through a simple one-step deproteinization procedure with 0.2mL of acetonitrile containing 30ng/mL of pirfenidone (IS), and to a 0.1mL plasma sample. Plasma samples were separated by UPLC on an Acquity UPLC BEH C18 column using a mobile phase consisting of acetonitrile-0.1% formic acid in water with gradient elution. The total run time was 3.0min and the elution of parthenolide was at 1.33min. The detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring (MRM) mode using the respective transitions m/z 249.2→231.1 for parthenolide and m/z 186.2→92.1 for pirfenidone (IS), respectively. The calibration curve was linear over the range of 2.0-500ng/mL with a lower limit of quantitation (LLOQ) of 2.0ng/mL. Mean recovery of parthenolide in plasma was in the range of 78.2-86.6%. Intra-day and inter-day precision were both <8.3%. This method was successfully applied in pharmacokinetic study after oral and intravenous administration of parthenolide in rats.


Subject(s)
Chromatography, Liquid/methods , Drugs, Chinese Herbal/pharmacokinetics , Sesquiterpenes/blood , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Calibration , Chromatography, Liquid/instrumentation , Drug Stability , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , In Vitro Techniques , Injections, Intravenous , Limit of Detection , Male , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Sesquiterpenes/administration & dosage , Tandem Mass Spectrometry/instrumentation
5.
Appl Microbiol Biotechnol ; 97(19): 8705-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23949996

ABSTRACT

Insect protein, used for in vitro culture media for entomopathogenic nematode, produces nematodes of high quality. However, the time-consuming culture and poor purity of nematodes hinder the commercial application of insect protein media. We show that hydrolyzed insect protein improves nematode purity in in vitro culture. The results revealed that nematode purity was increased by more than 90 %, and the culture period was reduced by 6 days. Estimated economic efficiency of using hydrolyzed insect protein medium was increased by 44.25 % over that obtained with non-hydrolyzed insect medium.


Subject(s)
Culture Media/chemistry , Insect Proteins/metabolism , Parasitology/methods , Rhabditida/growth & development , Rhabditida/metabolism , Animals , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...