Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
J Am Chem Soc ; 146(20): 14278-14286, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727720

ABSTRACT

The development of catalysts serves as the cornerstone of innovation in synthesis, as exemplified by the recent discovery of photoenzymes. However, the repertoire of naturally occurring enzymes repurposed by direct light excitation to catalyze new-to-nature photobiotransformations is currently limited to flavoproteins and keto-reductases. Herein, we shed light on imine reductases (IREDs) that catalyze the remote C(sp3)-C(sp3) bond formation, providing a previously elusive radical hydroalkylation of enamides for accessing chiral amines (45 examples with up to 99% enantiomeric excess). Beyond their natural function in catalyzing two-electron reductive amination reactions, upon direct visible-light excitation or in synergy with a synthetic photoredox catalyst, IREDs are repurposed to tune the non-natural photoinduced single-electron radical processes. By conducting wet mechanistic experiments and computational simulations, we unravel how engineered IREDs direct radical intermediates toward the productive and enantioselective pathway. This work represents a promising paradigm for harnessing nature's catalysts for new-to-nature asymmetric transformations that remain challenging through traditional chemocatalytic methods.

2.
Heliyon ; 10(7): e29039, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601608

ABSTRACT

Rural tourism is a powerful way to revitalize the countryside, and its spatial pattern is crucial for sustainable development. This paper analyzes the spatial distribution of rural tourism characteristic villages in Henan Province by taking 723 villages as the research object and using the nearest neighbor index, kernel density analysis, and spatial autocorrelation. It investigates the influencing factors utilizing the optimal parameters-based geographical detector (OPGD) model. The results show that, firstly, the overall spatial distribution of the rural tourism characteristic villages in Henan Province is characterized by aggregation and unbalanced distribution, and the overall spatial distribution density demonstrates the aggregation characteristics of "four cores and one belt". Secondly, the rural tourism characteristic villages can be divided into four primary categories, agricultural industry, rural culture, and featured villages and towns. The spatial distributions of the four main categories are all clustered. Thirdly, the primary factors affecting the differences in the spatial distribution of the rural tourism characteristic villages are the topographic features, economic development level, tourism market potential, traffic capacity, and relevant policies, among which the critical factor is the number of A-class scenic spots in the tourism market potential. To promote the optimisation of the spatial pattern of rural tourism, it is necessary to strengthen resource integration. Furthermore, it is important to conduct in-depth exploration of more factors in order to provide comprehensive guidance for the sustainable development of rural tourism.

3.
Angew Chem Int Ed Engl ; : e202402673, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656534

ABSTRACT

Repurposing enzymes to catalyze non-natural asymmetric transformations that are difficult to achieve using traditional chemical methods is of significant importance. Although radical C-O bond formation has emerged as a powerful approach for constructing oxygen-containing compounds, controlling the stereochemistry poses a great challenge. Here we present the development of a dual bio-/photo-catalytic system comprising an ene-reductase and an organic dye for achieving stereoselective lactonizations. By integrating directed evolution and photoinduced single electron oxidation, we repurposed engineered ene-reductases to steer non-natural radical C-O formations (one C-O bond for hydrolactonizations and lactonization-alkylations while two C-O bonds for lactonization-oxygenations). This dual catalysis gave a new approach to a diverse array of enantioenhanced 5- and 6-membered lactones with vicinal stereocenters, part of which bears a quaternary stereocenter (up to 99% enantiomeric excess, up to 12.9:1 diastereomeric ratio). Detailed mechanistic studies, including computational simulations, uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rh6G.

4.
Biomed Chromatogr ; 38(6): e5855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442715

ABSTRACT

Metabolite profiling has the potential to comprehensively bridge phenotypes and complex heterogeneous physiological and pathological states. We performed a metabolomics study using parallel liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis to screen for biomarkers of primary aldosteronism (PA) from a cohort of 111 PA patients and 218 primary hypertension (PH) patients. Hydrophilic interaction chromatography and reversed-phase liquid chromatography separations were employed to obtain a global plasma metabolome of endogenous metabolites. The satisfactory classification between PA and PH patients was obtained using the MVDA model. A total of 35 differential metabolites were screened out and identified. A diagnostic biomarker panel was established using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model and receiver operating characteristic analysis. Joint analysis with clinical indicators, including plasma supine aldosterone level, plasma orthostatic aldosterone level, body mass index, and blood potassium, revealed that the combination of metabolite biomarker panel and plasma supine aldosterone has the best clinical diagnostic efficacy.


Subject(s)
Biomarkers , Hyperaldosteronism , Mass Spectrometry , Metabolomics , Humans , Hyperaldosteronism/blood , Hyperaldosteronism/diagnosis , Metabolomics/methods , Biomarkers/blood , Female , Middle Aged , Male , Mass Spectrometry/methods , Chromatography, Liquid/methods , Metabolome/physiology , Adult , Aldosterone/blood , Liquid Chromatography-Mass Spectrometry
5.
J Clin Pharmacol ; 2024 03 18.
Article in English | MEDLINE | ID: mdl-38497347

ABSTRACT

Eltrombopag was approved as a first-line treatment for patients older than 2 years old with severe aplastic anemia (SAA). However, data on eltrombopag in children with different types of aplastic anemia (AA), especially non-severe AA (NSAA), are limited. We performed a prospective, single-arm, and observational study to investigate eltrombopag's efficacy, safety, and pharmacokinetics in children with NSAA, SAA, and very severe AA (VSAA). The efficacy and safety were assessed every 3 months. The population pharmacokinetic (PPK) model was used to depict the pharmacokinetic profile of eltrombopag. Twenty-three AA children with an average age of 7.9 (range of 3.0-14.0) years were enrolled. The response (complete and partial response) rate was 12.5%, 50.0%, and 100.0% after 3, 6, and 12 months in patients with NSAA. For patients with SAA and VSAA, these response rates were 46.7%, 61.5%, and 87.5%. Hepatotoxicity occurred in one patient. Fifty-three blood samples were used to build the PPK model. Body weight was the only covariate for apparent clearance (CL/F) and volume of distribution. The allele-T carrier of adenosine triphosphate-binding cassette transporter G2 was found to increase eltrombopag's clearance. However, when normalized by weight, the clearance between the wild-type and variant showed no statistical difference. In patients with response, children with NSAA exhibited lower area under the curve from time zero to infinity, higher CL/F, and higher weight-adjusted CL/F than those with SAA or VSAA. However, the differences were not statistically significant. The results may support further individualized treatment of eltrombopag in children with AA.

6.
Eur J Clin Invest ; : e14202, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38553975

ABSTRACT

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.

7.
J Am Chem Soc ; 146(7): 4455-4466, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335066

ABSTRACT

Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.


Subject(s)
Cytochromes c , Mitochondria , Cytochromes c/chemistry , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Mitochondrial Membranes/metabolism
8.
Food Chem ; 445: 138783, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38417194

ABSTRACT

The development of a rapid and convenient detection method for nitrofurantoin (NFT) residual is of great significance for food safety. Herein, a new fluorescent probe (Eu-TDCA-Phen) was developed for the visual and sensitive assay of NFT through the fluorescence quenching effect of inner filter effect (IFE) and photo-induced electron transfer (PET). The probe suspension demonstrates a wide linear range (0-0.16 mM), low detection limit (90 nM), high sensitivity, and rapid response time (2 min) in the "turn-off" process. To quantify the visual detection process, a smartphone-assisted test paper sensing platform was established and was applied for NFT determination in real honey samples, achieving satisfactory recovery rate ranges from 98.04 % to 105.04 %. Furthermore, a logic gate device was integrated with the sensing platform to streamline the visual detection process. The sensing platform offers several merits, including simpleness, quantification, portability and cost-effectiveness, making it highly suitable for real-time and on-site detection of antibiotics in food samples.


Subject(s)
Honey , Nitrofurantoin , Smartphone , Anti-Bacterial Agents , Biological Assay , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence
9.
Ann Hematol ; 103(4): 1345-1351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316642

ABSTRACT

Myelodysplastic syndrome (MDS) is a rare clonal hematopoietic disorder in children. The risk stratification system and treatment strategy for adults are unfit for children. The role of hypomethylating agents (HMAs) in higher-risk childhood MDS has not been identified. This study aimed to investigate the outcomes of hematopoietic stem cell transplantation (HSCT) in children with higher-risk MDS at one single center. A retrospective study was conducted in children with higher-risk MDS undergoing HSCT between September 2019 and March 2023 at Blood Diseases Hospital CAMS. The clinical characteristics and transplantation information were reviewed and analyzed. A total of 27 patients were analyzed, including 11 with MDS with excess blasts (MDS-EB), 14 with MDS-EB in transformation (MDS-EBt) or acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), and 2 with therapy-related MDS/AML (t-MDS/AML). Eight patients harbored monosomy 7. Before transplantation, induction therapy was administered to 25 patients, and 19 of them achieved bone marrow blasts <5% before HSCT. The stem cell source was unmanipulated-related bone marrow or peripheral blood stem cells for nineteen patients and unrelated cord blood for eight. All patients received decitabine-containing and Bu/Cy-based myeloablative conditioning; 26 patients achieved initial engraftment. The cumulative incidences of grade II-IV and grade III-IV acute graft-versus-host disease (GvHD) at 100 days were 65.4% and 42.3%, respectively. The incidence of cGvHD was 38.5%. The median follow-up was 26 (range 4-49) months after transplantation. By the end of follow-up, two patients died of complications and two died of disease progression. The probability of 3-year overall survival (OS) was 84.8% (95%CI, 71.1 to 98.5%). In summary, decitabine-containing myeloablative conditioning resulted in excellent outcomes for children with higher-risk MDS undergoing allogeneic HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Child , Humans , Decitabine/therapeutic use , Retrospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Myelodysplastic Syndromes/drug therapy , Transplantation Conditioning/methods , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control
10.
Food Chem ; 441: 138324, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176145

ABSTRACT

To develop the application of wheat bran and improve the nutrition and anti-staling capacity of Chinese steamed bread (CSB), oleic acid-esterified wheat bran (OWB) was prepared by esterification of wheat bran with oleic acid, and its physicochemical properties, structure, and quality improvement for CSB during refrigerated storage were investigated. The hydrophilic-lipophilic balance value of OWB was 16.0, the maximum degree of substitution was 0.146, and its emulsifying capacity was similar to that of glycerol monostearate. The starch gelatinization degree of CSB containing 3 % OWB and the control decreased by 19.55 % and 27.12 % within 7 days of refrigerated storage, respectively, while the hardness of CSB with OWB was lower than that with wheat bran. OWB inhibited starch recrystallization and increased bound water in the corresponding CSB, which effectively delayed starch retrogradation. OWB had a positive emulsifying capacity and showed potential as a functional material for preventing retrogradation of starch-based foods.


Subject(s)
Bread , Dietary Fiber , Bread/analysis , Dietary Fiber/analysis , Quality Improvement , Oleic Acid , Starch/chemistry , Steam , China
11.
Clin Pharmacol Ther ; 115(2): 213-220, 2024 02.
Article in English | MEDLINE | ID: mdl-37753808

ABSTRACT

Continuous 6-mercaptopurine (6-MP) dose titration is necessary because of its narrow therapeutic index and frequently encountered dose-limiting hematopoietic toxicity. However, evidence-based guidelines for gene-based 6-MP dosing have not been established for Chinese children with acute lymphoblastic leukemia (ALL). This multicenter, randomized, open-label, active-controlled clinical trial randomly assigned Chinese children with low- or intermediate-risk ALL in a 1:1 ratio to receive TPMT-NUDT15 gene-based dosing of 6-MP (N = 44, 10 to 50 mg/m2 /day) or standard dosing (N = 44, 50 mg/m2 /day) during maintenance therapy. The primary end point was the incidence of 6-MP myelosuppression in both groups. Secondary end points included frequencies of 6-MP hepatotoxicity, duration of myelosuppression and leukopenia, event-free survival, and steady-state concentrations of active metabolites (6-thioguaninenucleotides and 6-methylmercaptopurine nucleotides) in erythrocytes. A 2.2-fold decrease in myelosuppression, the primary end point, was observed in the gene-based-dose group using ~ 50% of the standard initial 6-MP dose (odds ratio, 0.26, 95% confidence interval, 0.11 to 0.64, P = 0.003). Patients in the gene-based-dose group had a significantly lower risk of developing thiopurine-induced myelosuppression and leukopenia (P = 0.015 and P = 0.022, respectively). No significant differences were observed in the secondary end points of the incidence of hepatotoxicity and steady-state concentrations of active metabolites in erythrocytes between the two groups. TPMT- and NUDT15-based dosing of 6-MP will significantly contribute toward further reducing the incidence of leukopenia in Chinese children with ALL. This trial is registered at www.clinicaltrial.gov as #NCT04228393.


Subject(s)
East Asian People , Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Antimetabolites, Antineoplastic/adverse effects , Bone Marrow Diseases , Chemical and Drug Induced Liver Injury , China/epidemiology , Leukopenia/chemically induced , Leukopenia/epidemiology , Mercaptopurine/adverse effects , Methyltransferases , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/ethnology
12.
Int J Biol Macromol ; 257(Pt 2): 128591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052287

ABSTRACT

In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 µmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.


Subject(s)
Glutens , Maillard Reaction , Glutens/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrolysis , Solubility
13.
Int J Hematol ; 119(2): 119-129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38147275

ABSTRACT

Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-ß (TGF-ß)/Smad signaling pathway.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transforming Growth Factor beta , Male , Adult , Humans , Signal Transduction , Apoptosis/genetics , Cell Proliferation , Microtubule Proteins/metabolism
14.
Food Chem ; 440: 138269, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38157705

ABSTRACT

Pymetrozine (PYM) is an effective pyridine insecticide for controlling aphids, while its residues pose a serious threat to human health. Herein, a europium complex (Eu-DBPA, DBPA represents deprotonated 2,5-dibromoterephthalic acid ligand) probe was prepared for the detection of PYM via fluorescence quenching. The detection process has the advantages of short response time (2 min), wide linear range (0-4 and 4-45 mg/kg) and low detection limit (2.2 µg/kg). Furthermore, a portable detection platform was designed by integrating Eu-DBPA-based paper strip with smartphone and applied for the visual detection of PYM in real cucumber, tomato, cabbage and apple samples, obtaining satisfactory recovery (99.00 %-107.00 %) and low standard deviation (RSD < 3.4 %). In addition, a logic gate device was designed to simplify the detection process. The smartphone-integrated paper-based probe detection platform provides a new strategy for intelligent and online identification of hazards in environmental and biological samples.


Subject(s)
Aphids , Brassicaceae , Humans , Animals , Smartphone , Triazines , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence
15.
Acta Neuropathol Commun ; 11(1): 200, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111057

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they participate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a functional nuclear localization signal (NLS; TDP-43ΔNLS and FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggregation with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown decreased cytoplasmic aggregation of TDP-43ΔNLS or FUSΔNLS and alleviated associated global translational suppression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and FUSΔNLS in some transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by interference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Sarcoma , Animals , Humans , Amyotrophic Lateral Sclerosis/pathology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Motor Neurons/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/pathology , Protein Biosynthesis , Sarcoma/metabolism , Sarcoma/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics
16.
BMC Med Genomics ; 16(1): 290, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974167

ABSTRACT

BACKGROUND: Individuals diagnosed with Fanconi anemia (FA), an uncommon disorder characterized by chromosomal instability affecting the FA signaling pathway, exhibit heightened vulnerability to the onset of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). METHODS: Herein, we employed diverse bioinformatics and statistical analyses to investigate the potential associations between the expression/mutation patterns of FA pathway genes and MDS/AML. RESULTS: The study included 4295 samples, comprising 3235 AML and 1024 MDS from our and nine other online cohorts. We investigated the distinct proportion of race, age, French-American-British, and gender factors. Compared to the FA wild-type group, we observed a decrease in the expression of FNACD2, FANCI, and RAD51C in the FA mutation group. The FA mutation group exhibited a more favorable clinical overall survival prognosis. We developed a random forest classifier and a decision tree based on FA gene expression for cytogenetic risk assessment. Furthermore, we created an FA-related Nomogram to predict survival rates in AML patients. CONCLUSIONS: This investigation facilitates a deeper understanding of the functional links between FA and MDS/AML.


Subject(s)
Fanconi Anemia , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis , Signal Transduction/genetics
17.
Food Chem X ; 19: 100832, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780272

ABSTRACT

Curdlan was effective in alleviating quality deterioration of frozen dough during storage. This research explored the mechanisms from perspectives of fermentation properties, water state and gluten structure of frozen dough during storage, and the performance of corresponding steamed bread. Results showed that curdlan addition improved the gas-releasing capability and gas-holding capability of frozen dough, meanwhile enhanced the specific volume and textural properties of corresponding steamed bread. The melting enthalpy and NMR results demonstrated that curdlan restricted the conversation of bound water into freezable water, and inhibited the moisture migration in frozen dough. Frozen dough with 0.5% curdlan had significantly lower gluten macropolymers (GMP) depolymerization degree and free sulfhydryl (SH) content than the control, indicating that curdlan alleviated the depolymerization of GMP. Microstructure results proved that the deterioration of the structure was retarded by curdlan. This study contributes to understanding the theories for curdlan alleviating the deterioration of frozen dough during storage.

18.
Acta Pharm Sin B ; 13(9): 3892-3905, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719383

ABSTRACT

Activating humoral and cellular immunity in lymph nodes (LNs) of nanoparticle-based vaccines is critical to controlling tumors. However, how the physical properties of nanovaccine carriers orchestrate antigen capture, lymphatic delivery, antigen presentation and immune response in LNs is largely unclear. Here, we manufactured gold nanoparticles (AuNPs) with the same size but different shapes (cages, rods, and stars), and loaded tumor antigen as nanovaccines to explore their disparate characters on above four areas. Results revealed that star-shaped AuNPs captured and retained more repetitive antigen epitopes. On lymphatic delivery, both rods and star-shaped nanovaccines mainly drain into the LN follicles region while cage-shaped showed stronger paracortex retention. A surprising finding is that the star-shaped nanovaccines elicited potent humoral immunity, which is mediated by CD4+ T helper cell and follicle B cell cooperation significantly preventing tumor growth in the prophylactic study. Interestingly, cage-shaped nanovaccines preferentially presented peptide-MHC I complexes to evoke robust CD8+ T cell immunity and showed the strongest therapeutic efficacy when combined with the PD-1 checkpoint inhibitor in established tumor study. These results highlight the importance of nanoparticle shape on antigen delivery and presentation for immune response in LNs, and our findings support the notion that different design strategies are required for prophylactic and therapeutic vaccines.

19.
Cancer Sci ; 114(11): 4445-4458, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37681349

ABSTRACT

Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with ß-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.


Subject(s)
Interferon-alpha , Neoplasms , Humans , Interferon-alpha/pharmacology , Interferon-alpha/genetics , Proteins/metabolism , Signal Transduction/genetics , Genes, Tumor Suppressor , Promoter Regions, Genetic , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Neoplasms/genetics , Microtubule Proteins/genetics , Microtubule Proteins/metabolism
20.
Orphanet J Rare Dis ; 18(1): 228, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537594

ABSTRACT

BACKGROUND: Inherited metabolic disorders (IMDs) usually occurs at young age and hence it severely threatening the health and life of young people. While so far there lacks a comprehensive study which can reveals China's nationwide landscape of IMDs. This study aimed to evaluate IMDs incidence and regional distributions in China at a national and province level to guide clinicians and policy makers. METHODS: The retrospective study conducted from January 2012 to March 2021, we analyzed and characterized 372255 cases' clinical test information and diagnostic data from KingMed Diagnostics Laboratory. The samples were from 32 provincial regions of China, the urine organic acids were detected by gas chromatography-mass spectrometry (GC-MS), amino acids and acylcarnitines in dried blood spots were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We did a statistical analysis of the distribution of the 16 most common IMDs in amino acid disorders and organic acidemias, and then paid special attention to analyze the age and regional distributions of different IMDs. The statistical analyses and visualization analysis were performed with the programming language R (version 4.2.1). RESULTS: There were 4911 positive cases diagnosed, which was 1.32% of the total sample during the ten-year study period. Most diseases tended to occur at ages younger than 18 year-old. The Ornithine Transcarbamylase Deficiency tended to progress on male infants who were less than 28 days old. While the peak of the positive case number of Citrin Deficiency disease (CD) was at 1-6 months. Different IMDs' had different distribution patterns in China's provinces. Methylmalonic Acidemias and Hyperphenylalaninemia had an imbalanced distribution pattern in China and its positive rate was significantly higher in North China than South China. Conversely, the positive rate of CD was significantly higher in South China than North China. CONCLUSIONS: Results of this work, such as the differences in distribution pattern of different diseases in terms of age, region, etc. provide important insights and references for clinicians, researchers and healthcare policy makers. The policy makers could optimize the better health screening programs for covering children and infants in specific ages and regions based on our findings.


Subject(s)
Metabolic Diseases , Tandem Mass Spectrometry , Infant , Child , Humans , Male , Adolescent , Retrospective Studies , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Metabolic Diseases/diagnosis , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...