Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Stroke ; 55(4): 1075-1085, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445502

ABSTRACT

BACKGROUND: Ischemic stroke is often accompanied by oxidative stress and inflammatory response, both of which work synergistically to exacerbate the disruption of the blood-brain barrier and ischemic brain injury. ALK (anaplastic lymphoma kinase), a cancer-associated receptor tyrosine kinase, was found to play a role in oxidative stress and inflammation. In this study, we investigated the role of ALK inhibition in a murine model of ischemic stroke. METHODS: Focal cerebral ischemia was induced by temporary occlusion of the right middle cerebral artery in mice with a filament. The ALK inhibitor alectinib was administered following the stroke. ALOX15 (arachidonic acid 15-lipoxygenase) was overexpressed by adenovirus injection. The immunohistochemistry, Western blot, oxidative stress, inflammation, blood-brain barrier leakage, infarct volume, and functional outcomes were determined. RESULTS: We found that the expression of ALK was markedly increased in the neurovascular unit after cerebral ischemia. Treatment with the ALK inhibitor alectinib reduced the accumulation of reactive oxygen species, lipid peroxidation, and oxidative DNA, increased the vascular levels of antioxidant enzymes, inactivated the vascular NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome pathway, and reduced vascular inflammation (ICAM-1 [intercellular adhesion molecule-1] and MCP-1 [monocyte chemoattractant protein-1]) after ischemia. Moreover, alectinib reduced the loss of cerebrovascular integrity and blood-brain barrier damage, consequently decreasing brain infarction and neurological deficits. Furthermore, alectinib reduced stroke-evoked ALOX15 expression, whereas virus-mediated overexpression of ALOX15 abolished alectinib-dependent inhibition of oxidative stress and vascular inflammation, blood-brain barrier protection, and neuroprotection, suggesting the protective effects of alectinib for stroke may involve ALOX15. CONCLUSIONS: Our findings demonstrated that alectinib protects from stroke by regulating ischemic signaling cascades and suggest that ALK may be a novel therapeutic target for ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Mice , Anaplastic Lymphoma Kinase/metabolism , Blood-Brain Barrier/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/pathology , Inflammation/pathology , Ischemic Stroke/complications , Protein Kinase Inhibitors/pharmacology
2.
Transl Res ; 270: 42-51, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38522823

ABSTRACT

Blood-brain-barrier (BBB) disruption is a pathological hallmark of ischemic stroke, and inflammation occurring at the BBB contributes to the pathogenesis of ischemic brain injury. Lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, is elevated in patients with acute stroke. The activity of LPS is controlled by acyloxyacyl hydrolase (AOAH), a host enzyme that deacylates LPS to inactivated forms. However, whether AOAH influences the pathogenesis of ischemic stroke remain elusive. We performed in vivo experiments to explore the role and mechanism of AOAH on neutrophil extravasation, BBB disruption, and brain infarction. We found that AOAH was upregulated in neutrophils in peri-infarct areas from mice with transient focal cerebral ischemia. AOAH deficiency increased neutrophil extravasation into the brain parenchyma and proinflammatory cytokine production, broke down the BBB and worsened stroke outcomes in mice. These effects require Toll-like receptor 4 (TLR4) because absence of TLR4 or pharmacologic inhibition of TLR4 signaling prevented the exacerbated inflammation and BBB damage in Aoah-/- mice after ischemic stroke. Importantly, neutrophil depletion or inhibition of neutrophil trafficking by blocking LFA-1 integrin dramatically reduced stroke-induced BBB breakdown in Aoah-/- mice. Furthermore, virus-mediated overexpression of AOAH induced a substantial decrease in neutrophil recruitment that was accompanied by reducing BBB damage and stroke volumes. Our findings show the importance of AOAH in regulating neutrophil-dependent BBB breakdown and cerebral infarction. Consequently, strategies that modulate AOAH may be a new therapeutic approach for treatment of ischemic stroke.


Subject(s)
Blood-Brain Barrier , Carboxylic Ester Hydrolases , Lipopolysaccharides , Neutrophils , Stroke , Animals , Mice , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Stroke/pathology , Stroke/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Brain/pathology , Brain/metabolism , Male , Mice, Knockout , Disease Models, Animal
3.
Exp Neurol ; 371: 114587, 2024 01.
Article in English | MEDLINE | ID: mdl-37914067

ABSTRACT

Blood-brain barrier (BBB) breakdown and cerebrovascular dysfunction may contribute to the pathology in white matter lesions and consequent cognitive decline caused by cerebral hypoperfusion. Neddylation is the process of attaching a ubiquitin-like molecule NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) to specific targets. By modifying protein substrates, neddylation plays critical roles in various important biological processes. However, whether neddylation influences the pathogenesis of hypoperfused brain remains unclear. In the present study, cerebral hypoperfusion-induced white matter lesions were produced by bilateral common carotid artery stenosis in mice. The function of the neddylation pathway, BBB integrity, cerebrovascular dysfunction, myelin density in the corpus callosum and cognitive function were determined. We show that NEDD8 conjugation aberrantly amplified in microvascular endothelium in the corpus callosum following cerebral hypoperfusion. MLN4924, a small-molecule inhibitor of NEDD8-activating enzyme currently in clinical trials, preserved BBB integrity, attenuated glial activation and enhanced oligodendrocyte differentiation, and reduced hypoperfusion-induced white matter lesions in the corpus callosum and thus improved cognitive performance via inactivating cullin-RING E3 ligase (CRL). Administration of MLN4924 caused the accumulation of ERK5 and KLF2. The ERK5 inhibitor BIX 02189, down-regulated MLN4924-induced activation of KLF2 and reversed MLN4924-mediated increase in pericyte coverage and junctional proteins. Furthermore, BIX 02189 blocked MLN4924-afforded protection against BBB disruption and white matter lesions in the corpus callosum. Collectively, our results revealed that neddylation impairs vascular function and thus exacerbated the pathology of hypoperfused brain and that inhibition of neddylation with MLN4924 may offer novel therapeutic opportunities for cerebral hypoperfusion-associated cognitive impairment.


Subject(s)
Blood-Brain Barrier , Ubiquitins , Animals , Mice , Ubiquitins/metabolism , Blood-Brain Barrier/metabolism , Corpus Callosum/metabolism
4.
Free Radic Biol Med ; 188: 194-205, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35750271

ABSTRACT

BACKGROUND: Inflammation plays an important role in diabetes mellitus (DM)-related acute ischemic stroke (AIS). The mechanisms of un-resolved inflammation in DM-related AIS are not fully understood. Specialized pro-resolving mediators (SPMs) are key regulators that promote resolution of inflammation. We aimed to examine resolution function in patients with AIS complicated with DM, and explore potential treatment effects of one of the SPMs, resolvin D2 (RvD2) ex vivo and in vivo. METHODS: Cultured human macrophages, which were derived from peripheral blood mononuclear cells of AIS and none-AIS patients with or without DM, were stimulated with oxidized-low density lipoprotein (ox-LDL). Levels of SPMs and inflammatory markers were analysed, and RvD2 treatment effects were evaluated in these cells. For experiments in vivo, challenges with high fat diet and low-dose streptozotocin (STZ) were used to induce DM in C57BL/6J mice. AIS model was established by permanent middle cerebral artery occlusion (pMCAO) followed by intra-cerebroventricular injection of RvD2. RESULTS: Compared with macrophages of AIS patients without DM, the ratios of SPMs to leukotriene B4 (LTB4) were decreased in AIS patients with DM, accompanied by reduced expression of SPM synthesis enzyme, 15-lipoxygenase-1. Moreover, the levels of pro-inflammatory pathway markers were increased, and the macrophages were skewed to M1 polarization in AIS patients with DM. In mice, treatment with RvD2 ameliorated pMCAO-induced brain injury, neurological dysfunction, and inflammatory response. Furthermore, RvD2 rescued resolution of inflammation by promoting macrophage/microglia polarization to pro-resolving M2 phenotype ex vivo and in vivo. CONCLUSIONS: Our data demonstrate resolution of inflammation is impaired by DM in AIS patients, implicating a novel mechanism of un-resolved inflammation in DM-related AIS. Furthermore, RvD2 promotes inflammation resolution in macrophages/microglia and protects DM-related AIS, and may thus serve as a novel therapeutic target.


Subject(s)
Diabetes Mellitus , Ischemic Stroke , Animals , Diabetes Mellitus/drug therapy , Docosahexaenoic Acids/metabolism , Humans , Infarction, Middle Cerebral Artery , Inflammation/drug therapy , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101976

ABSTRACT

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Cyclopentanes/pharmacology , NEDD8 Protein/metabolism , Nerve Tissue Proteins , Protein Processing, Post-Translational/drug effects , Pyrimidines/pharmacology , Ubiquitin-Protein Ligases , Animals , Brain Injuries/drug therapy , Brain Injuries/enzymology , Brain Ischemia/drug therapy , Brain Ischemia/enzymology , Male , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
6.
Blood ; 138(1): 91-103, 2021 07 08.
Article in English | MEDLINE | ID: mdl-33881503

ABSTRACT

Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.


Subject(s)
Extracellular Traps/metabolism , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/pathology , Nucleotidyltransferases/metabolism , Stroke/complications , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Deoxyribonuclease I/metabolism , Humans , Interferon Type I/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Neutrophil Infiltration , Protein-Arginine Deiminase Type 4/deficiency , Protein-Arginine Deiminase Type 4/metabolism , Signal Transduction , Tissue Plasminogen Activator , Up-Regulation
7.
Nat Commun ; 11(1): 2488, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427863

ABSTRACT

Neovascularization and vascular remodeling are functionally important for brain repair after stroke. We show that neutrophils accumulate in the peri-infarct cortex during all stages of ischemic stroke. Neutrophils producing intravascular and intraparenchymal neutrophil extracellular traps (NETs) peak at 3-5 days. Neutrophil depletion reduces blood-brain barrier (BBB) breakdown and enhances neovascularization at 14 days. Peptidylarginine deiminase 4 (PAD4), an enzyme essential for NET formation, is upregulated in peri-ischemic brains. Overexpression of PAD4 induces an increase in NET formation that is accompanied by reduced neovascularization and increased BBB damage. Disruption of NETs by DNase 1 and inhibition of NET formation by genetic ablation or pharmacologic inhibition of PAD increases neovascularization and vascular repair and improves functional recovery. Furthermore, PAD inhibition reduces stroke-induced STING-mediated production of IFN-ß, and STING knockdown and IFN receptor-neutralizing antibody treatment reduces BBB breakdown and increases vascular plasticity. Collectively, our results indicate that NET release impairs vascular remodeling during stroke recovery.


Subject(s)
Brain/metabolism , Extracellular Traps/metabolism , Neutrophils/metabolism , Stroke/metabolism , Vascular Remodeling , Animals , Blood-Brain Barrier/metabolism , Brain/blood supply , Disease Models, Animal , Extracellular Traps/genetics , Humans , Interferon-beta/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism , Stroke/genetics
8.
J Neuroinflammation ; 17(1): 67, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32075652

ABSTRACT

BACKGROUND: ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) plays a vital role in preventing microvascular thrombosis and inflammation. Reduced ADAMTS13 levels in plasma have been detected in multiple sclerosis (MS) patients. In the present study, we have determined the role of ADAMTS13 in the disease progression of MS using a mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS: Female C57BL/6 mice were immunized with MOG35-55 peptide and then treated with ADAMTS13 or vehicle in preventive and therapeutic settings. Mice were analyzed for clinical deficit, white matter demyelination and inflammatory cell infiltration. To explore the underlying mechanism, VWF expression and blood-spinal cord barriers (BSCB) were determined. RESULTS: Plasma ADAMTS13 activity was suppressed in EAE mice. ADAMTS13-treated EAE mice exhibited an ameliorated disease course, reduced demyelination, and decreased T lymphocyte, neutrophil and monocyte infiltration into the spinal cord. Consistently, ADAMTS13 treatment reduced VWF levels and inhibited BSCB breakdown in the spinal cords of EAE mice. However, leukocytes in the blood and spleen of EAE mice remained unaffected by ADAMTS13 administration. CONCLUSION: Our results demonstrate that ADAMTS13 treatment ameliorates inflammatory responses, demyelination and disease course in EAE mice. Therefore, our study suggests that ADAMTS13 may represent a potential therapeutic strategy for MS patients.


Subject(s)
ADAMTS13 Protein/administration & dosage , ADAMTS13 Protein/blood , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/blood , Animals , Female , Mice , Mice, Inbred C57BL
9.
PLoS Biol ; 17(6): e3000313, 2019 06.
Article in English | MEDLINE | ID: mdl-31185010

ABSTRACT

Blood-brain barrier (BBB) defects and cerebrovascular dysfunction contribute to amyloid-ß (Aß) brain accumulation and drive Alzheimer disease (AD) pathology. By regulating vascular functions and inflammation in the microvasculature, a disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) plays a significant protective effect in atherosclerosis and stroke. However, whether ADAMTS13 influences AD pathogenesis remains unclear. Using in vivo multiphoton microscopy, histological, behavioral, and biological methods, we determined BBB integrity, cerebrovascular dysfunction, amyloid accumulation, and cognitive impairment in APPPS1 mice lacking ADAMTS13. We also tested the impact of viral-mediated expression of ADAMTS13 on cerebrovascular function and AD-like pathology in APPPS1 mice. We show that ADAMTS13 deficiency led to an early and progressive BBB breakdown as well as reductions in vessel density, capillary perfusion, and cerebral blood flow in APPPS1 mice. We found that deficiency of ADAMTS13 increased brain plaque load and Aß levels and accelerated cerebral amyloid angiopathy (CAA) by impeding BBB-mediated clearance of brain Aß, resulting in worse cognitive decline in APPPS1 mice. Virus-mediated expression of ADAMTS13 attenuated BBB disruption and increased microvessels, capillary perfusion, and cerebral blood flow in APPPS1 mice already showing BBB damage and plaque deposition. These beneficial vascular effects were reflected by increase in clearance of cerebral Aß, reductions in Aß brain accumulation, and improvements in cognitive performance. Our results show that ADAMTS13 deficiency contributes to AD cerebrovascular dysfunction and the resulting pathogenesis and cognitive deficits and suggest that ADAMTS13 may offer novel therapeutic opportunities for AD.


Subject(s)
ADAMTS13 Protein/metabolism , ADAMTS13 Protein/physiology , Cerebrovascular Circulation/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Cognitive Dysfunction , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
10.
Cell Mol Neurobiol ; 39(6): 823-831, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31065924

ABSTRACT

Severe haemorrhagic transformation (HT), a common complication of recombinant tissue plasminogen activator (rtPA) treatment, predicts poor clinical outcomes in acute ischaemic stroke. The search for agents to mitigate this effect includes investigating biomolecules involved in neovascularization. This study examines the role of Cathepsin K (Ctsk) in rtPA-induced HT after focal cerebral ischaemia in mice. After knockout of Ctsk, the gene encoding Ctsk, the outcomes of Ctsk+/+ and Ctsk-/- mice were compared 24 h after rtPA-treated cerebral ischaemia with respect to HT severity, neurological deficits, brain oedema, infarct volume, number of apoptotic neurons and activated microglia/macrophage, blood-brain barrier integrity, vascular endothelial growth factor (VEGF) expression and Akt-mTOR pathway activation. We observed that haemoglobin levels, brain oedema and infarct volume were significantly greater and resulted in more severe neurological deficits in Ctsk-/- than in Ctsk+/+ mice. Consistent with our hypothesis, the number of NeuN-positive neurons was lower and the number of TUNEL-positive apoptotic neurons and activated microglia/macrophage was higher in Ctsk-/- than in Ctsk+/+ mice. Ctsk knockout mice exhibited more severe blood-brain barrier (BBB) disruption, with microvascular endothelial cells exhibiting greater VEGF expression and lower ratios of phospo-Akt/Akt and phospo-mTOR/mTOR than in Ctsk+/+ mice. This study is the first to provide molecular insights into Ctsk-regulated HT after cerebral ischaemia, suggesting that Ctsk deficiency may disrupt the BBB via Akt/mTOR/VEGF signalling, resulting in neurological deficits and neuron apoptosis. Ctsk administration has the potential as a novel modality for improving the safety of rtPA treatment following stroke.


Subject(s)
Brain Ischemia/complications , Cathepsin K/deficiency , Cerebral Hemorrhage/etiology , Animals , Apoptosis , Blood-Brain Barrier/pathology , Cathepsin K/metabolism , Infarction, Middle Cerebral Artery/pathology , Macrophages/pathology , Male , Mice, Knockout , Microglia/pathology , Neurons/pathology , Permeability , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tissue Plasminogen Activator , Vascular Endothelial Growth Factor A/metabolism
11.
Front Neurosci ; 13: 338, 2019.
Article in English | MEDLINE | ID: mdl-31024246

ABSTRACT

BACKGROUND: Exacerbated blood-brain barrier (BBB) damage is related with tissue plasminogen activator (tPA)-induced brain hemorrhage after stroke. Platelets have long been recognized as the cellular orchestrators of primary haemostasis. Recent studies have demonstrated further that platelets are required for supporting intact mature blood vessels and play a crucial role in maintaining vascular integrity during inflammation. Therefore, we sought to investigate whether platelets could reduce tPA-induced deterioration of cerebrovascular integrity and lead to less hemorrhagic transformation. METHODS: Mice were subjected to models of collagenase-induced intracerebral hemorrhage (ICH) and transient middle cerebral artery (MCA) occlusion. After 2 h of MCA occlusion, tPA (10 mg/kg) was administered as an intravenous bolus injection of 1 mg/kg followed by a 9 mg/kg infusion for 30 min. Immediately after tPA treatment, mice were transfused with platelets. Hemorrhagic volume, infarct size, neurological deficit, tight junction and basal membrane damages, endothelial cell apoptosis, and extravascular accumulation of circulating dextran and IgG, and Evans blue were quantified at 24 h. RESULTS: Platelet transfusion resulted in a significant decrease in hematoma volume after ICH. In mice after ischemia, tPA administration increased brain hemorrhage transformation and this was reversed by resting but not activated platelets. Consistent with this, we observed that tPA-induced brain hemorrhage was dramatically exacerbated in thrombocytopenic mice. Transfusion of resting platelets ameliorated tPA-induced loss of cerebrovascular integrity and reduced extravascular accumulation of circulating serum proteins and Evans blue, associated with improved neurological functions after ischemia. No changes were found for infarct volume. Inhibition of platelet receptor glycoprotein VI (GPVI) blunted the ability of platelets to attenuate tPA-induced BBB disruption and hemorrhage after ischemia. CONCLUSION: Our findings demonstrate the importance of platelets in safeguarding BBB integrity and suggest that transfusion of resting platelets may be useful to improve the safety of tPA thrombolysis in ischemic stroke.

12.
Front Cell Neurosci ; 12: 205, 2018.
Article in English | MEDLINE | ID: mdl-30061815

ABSTRACT

Background: Growth differentiation factor 11 (GDF11), a member of transforming growth factor-ß (TGF-ß) superfamily, was shown to rejuvenate cardiac and skeletal muscle function and to improve cerebral vasculature and neurogenesis in old mice. However, recent experimental data reported that raising GDF11 levels inhibited skeletal muscle regeneration and had no effect on cardiac hypertrophy. Our aim was to investigate the effects of GDF11 on brain repair during the recovery phase after stroke. Methods: Mice were subjected to distal middle cerebral artery occlusion, and recombinant GDF11 (rGDF11) was injected intraperitoneally once a day during days 7-13 after stroke. Neuronal precursor cells (NPCs) proliferation and angiogenesis were assayed at 14 days. Neuronal regeneration was assayed at 42 days. The beam-walking test and CatWalk were used to evaluate behavioral functions. Downstream pathways of GDF11 were also investigated. Results: GDF11 was upregulated in the ipsilateral peri-infarct cortex and subventricular zone (SVZ) at 14 days after stroke. Treatment with rGDF11 enhanced the number of newborn NPCs and endothelial cells, microvascular length and area, and brain capillary perfusion. Western blots showed that rGDF11 upregulated brain-derived neurotrophic factor (BDNF) and increased the levels of proangiogenic factor angiopoietin-2 (Ang-2) and phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2). We also found that rGDF11 upregulated the transcription factors Smad2 and Smad3 phosphorylation, but these activations were blocked by a TGF-ß receptor inhibitor SB431542. Moreover, rGDF11-induced angiogenic remodeling and NPCs proliferation were reversed by injection of SB431542, suggesting that GDF11 may exert its effect via the TGF-ß/Smad2/3 signaling pathway. Finally, treating mice with rGDF11 resulted in a significant increase in neuronal regeneration and functional recovery. Conclusion: GDF11 promoted neurogenesis and angiogenesis and contributed to functional recovery after stroke in mice.

13.
Sci Rep ; 8(1): 7408, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743683

ABSTRACT

Managing endovascular thrombectomy (ET) in diabetic ischemic stroke (IS) with novel anticoagulants is challenging due to putative risk of intracerebral hemorrhage. The study evaluates increased hemorrhagic transformation (HT) risk in Rivaroxaban-treated diabetic rats post ET. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 60 mg/kg streptozotocin. After 4-weeks, rats were pretreated orally with 30 mg/kg Rivaroxaban/saline; prothrombin time was monitored. IS and ET was induced after 1 h, by thread-induced transient middle cerebral artery occlusion (tMCAO) that mimicked mechanical ET for proximal MCA occlusion at 60 min. After 24 h reperfusion, infarct volumes, HT, blood-brain barrier (BBB) permeability, tight junction at peri-ischemic lesion and matrix metalloproteinase-9 (MMP-9) activity was measured. Diabetic rats seemed to exhibit increased infarct volume and HT at 24 h after ET than normal rats. Infarct volumes and functional outcomes did not differ between Rivaroxaban and diabetic control groups. A significant increase in HT volumes and BBB permeability under Rivaroxaban treatment was not detected. Compared to diabetic control group, neither the occludin expression was remarkably lower in the Rivaroxaban group nor the MMP-9 activity was higher. Together, Rivaroxaban does not increase HT after ET in diabetic rats with proximal MCA occlusion, since Rivaroxaban has fewer effects on post-ischemic BBB permeability.


Subject(s)
Brain Ischemia/complications , Diabetes Mellitus, Experimental/complications , Intracranial Hemorrhages/complications , Rivaroxaban/pharmacology , Stroke/complications , Stroke/surgery , Thrombectomy , Animals , Blood-Brain Barrier/metabolism , Intracranial Hemorrhages/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Occludin/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Risk
14.
Blood ; 130(1): 11-22, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28428179

ABSTRACT

Angiogenic response is essential for ischemic brain repair. The von Willebrand factor (VWF)-cleaving protease disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) is required for endothelial tube formation in vitro, but there is currently no in vivo evidence supporting a function of ADAMTS13 in angiogenesis. Here we show that mice deficient in ADAMTS13 exhibited reduced neovascularization, brain capillary perfusion, pericyte and smooth muscle cell coverage on microvessels, expression of the tight junction and basement membrane proteins, and accelerated blood-brain barrier (BBB) breakdown and extravascular deposits of serum proteins in the peri-infarct cortex at 14 days after stroke. Deficiency of VWF or anti-VWF antibody treatment significantly increased microvessels, perfused capillary length, and reversed pericyte loss and BBB changes in Adamts13-/- mice. Furthermore, we observed that ADAMTS13 deficiency decreased angiopoietin-2 and galectin-3 levels in the isolated brain microvessels, whereas VWF deficiency had the opposite effect. Correlating with this, overexpression of angiopoietin-2 by adenoviruses treatment or administration of recombinant galectin-3 normalized microvascular reductions, pericyte loss, and BBB breakdown in Adamts13-/- mice. The vascular changes induced by angiopoietin-2 overexpression and recombinant galectin-3 treatment in Adamts13-/- mice were abolished by the vascular endothelial growth factor receptor-2 antagonist SU1498. Importantly, treating wild-type mice with recombinant ADAMTS13 at 7 days after stroke markedly increased neovascularization and vascular repair and improved functional recovery at 14 days. Our results suggest that ADAMTS13 controls key steps of ischemic vascular remodeling and that recombinant ADAMTS13 is a putative therapeutic avenue for promoting stroke recovery.


Subject(s)
ADAMTS13 Protein/metabolism , Blood-Brain Barrier/metabolism , Stroke/metabolism , Vascular Remodeling , von Willebrand Factor/metabolism , ADAMTS13 Protein/genetics , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Animals , Blood-Brain Barrier/pathology , Galectin 3/genetics , Galectin 3/metabolism , Mice , Mice, Knockout , Stroke/genetics , Stroke/pathology , von Willebrand Factor/genetics
15.
Sci Rep ; 6: 35901, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782211

ABSTRACT

Spontaneous intracerebral haemorrhage (ICH) is the most devastating stroke subtype and has no proven treatment. von Willebrand factor (VWF) has recently been demonstrated to promote inflammation processes. The present study investigated the pathophysiological role of VWF after experimental ICH. Functional outcomes, brain edema, blood-brain barrier (BBB) permeability, cerebral inflammation and levels of intercellular adhesion molecule-1 (ICAM-1) and matrix metalloproteinase-9 (MMP-9) were measured in a mouse model of ICH induced by autologous blood injection. We show that VWF were increased in the plasma and was accumulated in the perihematomal regions of mice subjected to ICH. Injection of VWF resulted in incerased expression of proinflammatory mediators and activation of ICAM-1 and MMP-9, associated with elevated myeloperoxidase, recruitment of neutrophils and microglia. Moreover, mice treated with VWF showed dramatically decreased pericyte coverage, more severe BBB damage and edema formation, and neuronal injury was increased compared with controls. In contrast, blocking antibodies against VWF reduced BBB damage and edema formation and improved neurological function. Together, these data identify a critical role for VWF in cerebral inflammation and BBB damage after ICH. The therapeutic interventions targeting VWF may be a novel strategy to reduce ICH-related injury.


Subject(s)
Cerebral Hemorrhage/blood , von Willebrand Factor/metabolism , Animals , Antibodies, Blocking/administration & dosage , Blood-Brain Barrier , Brain Edema/blood , Brain Edema/pathology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/physiopathology , Disease Models, Animal , Inflammation/blood , Inflammation/pathology , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Prognosis , von Willebrand Factor/antagonists & inhibitors , von Willebrand Factor/immunology
16.
Sci Rep ; 6: 25971, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27181025

ABSTRACT

Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke, but its neurotoxicity is a significant problem. Here we tested the hypothesis that recombinant ADAMTS 13 (rADAMTS 13) would reduce tPA neurotoxicity in a mouse model of stroke. We show that treatment with rADAMTS 13 in combination with tPA significantly reduced infarct volume compared with mice treated with tPA alone 48 hours after stroke. The combination treatment significantly improved neurological deficits compared with mice treated with tPA or vehicle alone. These neuroprotective effects were associated with significant reductions in fibrin deposits in ischemic vessels and less severe cell death in ischemic brain. The effect of rADAMTS13 on tPA neurotoxicity was mimicked by the N-methyl-D-aspartate (NMDA) receptor antagonist M-801, and was abolished by injection of NMDA. Moreover, rADAMTS 13 prevents the neurotoxicity effect of tPA, by blocking its interaction with the NMDA receptor NR2B and the attendant phosphorylation of NR2B and activation of ERK1/2. Finally, the NR2B-specific NMDA receptor antagonist ifenprodil abolished tPA neurotoxicity and rADAMTS 13 treatment had no further beneficial effect. Our data suggest that the combination of rADAMTS 13 and tPA may provide a novel treatment of ischemic stroke by diminishing the neurotoxic effects of exogenous tPA.


Subject(s)
ADAMTS13 Protein/administration & dosage , Brain Ischemia/drug therapy , Neurotoxicity Syndromes/prevention & control , Stroke/drug therapy , Tissue Plasminogen Activator/toxicity , ADAMTS13 Protein/pharmacology , Animals , Brain Ischemia/pathology , Disease Models, Animal , Fibrin/metabolism , Male , Mice , Phosphorylation/drug effects , Protein Binding/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Stroke/pathology , Tissue Plasminogen Activator/administration & dosage
17.
Mol Neurobiol ; 53(5): 3494-3502, 2016 07.
Article in English | MEDLINE | ID: mdl-26887382

ABSTRACT

Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD.


Subject(s)
Cognition Disorders/drug therapy , Cognition Disorders/prevention & control , Cognition , Dementia, Vascular/drug therapy , Dementia, Vascular/physiopathology , Dextromethorphan/therapeutic use , Hippocampus/pathology , Neurons/pathology , Animals , Brain Injuries/complications , Brain Injuries/pathology , Brain Injuries/physiopathology , Carotid Artery, Common/pathology , Cognition/drug effects , Cognition Disorders/complications , Dementia, Vascular/complications , Dextromethorphan/pharmacology , Heme Oxygenase-1/metabolism , Male , Maze Learning/drug effects , Neostriatum/drug effects , Neostriatum/pathology , Neostriatum/physiopathology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neurons/drug effects , Neurons/metabolism , Neuroprotection/drug effects , Optic Tract/drug effects , Optic Tract/pathology , Optic Tract/physiopathology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Up-Regulation/drug effects , White Matter/drug effects , White Matter/pathology , White Matter/physiopathology
18.
Neuroreport ; 26(15): 896-902, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26339991

ABSTRACT

In the mammalian brain, neurogenesis persists throughout the embryonic period and adulthood in the subventricular zone of the lateral ventricle and the granular zone (dentate gyrus) of the hippocampus. Newborn neural progenitor cells (NPCs) in the two regions play a critical role in structural and functional plasticity and neural regeneration after brain injury. Previous studies have reported that extremely low-frequency electromagnetic fields (ELF-EMF) could promote osteogenesis, angiogenesis, and cardiac stem cells' differentiation, which indicates that ELF-EMF might be an effective tool for regenerative therapy. The present studies were carried out to examine the effects of ELF-EMF on hippocampal NPCs cultured from embryonic and adult ischemic brains. We found that exposure to ELF-EMF (50 Hz, 0.4 mT) significantly enhanced the proliferation capability both in embryonic NPCs and in ischemic NPCs. Neuronal differentiation was also enhanced after 7 days of cumulative ELF-EMF exposure, whereas glial differentiation was not influenced markedly. The expression of phosphorylated Akt increased during the proliferation process when ischemic NPCs were exposed to ELF-EMF. However, blockage of the Akt pathway abolished the ELF-EMF-induced proliferation of ischemic NPCs. These data show that ELF-EMF promotes neurogenesis of ischemic NPCs and suggest that this effect may occur through the Akt pathway.Video abstract, Supplemental Digital Content 1, http://links.lww.com/WNR/A347.


Subject(s)
Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Electromagnetic Fields , Infarction, Middle Cerebral Artery/pathology , Neural Stem Cells/radiation effects , Animals , Bromodeoxyuridine/metabolism , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Radiation , Embryo, Mammalian , Male , Mice , Mice, Inbred C57BL , Phosphorylation/radiation effects , Proto-Oncogene Proteins c-akt/metabolism
19.
Stroke ; 46(9): 2647-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26251246

ABSTRACT

BACKGROUND AND PURPOSE: Inflammatory responses and blood-brain barrier (BBB) dysfunction play important roles in brain injury after intracerebral hemorrhage (ICH). The metalloprotease ADAMTS 13 (a disintegrin and metalloprotease with thrombospondin type I motif, member 13) was shown to limit inflammatory responses through its proteolytic effects on von Willebrand factor. In the present study, we addressed the role of ADAMTS 13 after experimental ICH. METHODS: ICH was induced in mice by intracerebral infusion of autologous blood. The peri-hematomal inflammatory responses, levels of matrix metalloproteinase-9 and intercellular adhesion molecule-1, pericyte coverage on brain capillaries, and BBB permeability were quantified at 24 hours. Functional outcomes, cerebral edema, and hemorrhagic lesion volume were quantified at day 3. RESULTS: Treatment with recombinant ADAMTS 13 (rADAMTS 13) reduced the levels of chemokines and cytokines, myeloperoxidase activity, and microglia activation and neutrophil recruitment after ICH. rADAMTS 13 also decreased interleukin-6 expression in brain endothelial cells stimulated by lipopolysaccharide, whereas recombinant von Willebrand factor reversed this effect. The anti-inflammatory effect of rADAMTS 13 was accompanied by reduced expression of intercellular adhesion molecule-1 and less activation of matrix metalloproteinase, enhanced pericyte coverage of brain microvessels, and attenuated BBB disruption. Furthermore, neutrophil depletion protected against BBB damage, and rADAMTS 13 treatment had no further beneficial effect. Finally, treatment of mice with rADAMTS 13 reduced cerebral edema and hemorrhagic lesion volume and improved neurological functions. CONCLUSIONS: Our findings reveal the importance of rADAMTS 13 in regulating pathological inflammation and BBB function and suggest that rADAMTS 13 may provide a new therapeutic strategy for ICH.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blood-Brain Barrier/drug effects , Brain Edema/drug therapy , Brain Injuries/drug therapy , Cerebral Hemorrhage/drug therapy , Inflammation/drug therapy , Metalloendopeptidases/pharmacology , ADAMTS13 Protein , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/physiopathology , Brain Edema/etiology , Brain Edema/immunology , Brain Injuries/etiology , Brain Injuries/immunology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/immunology , Inflammation/etiology , Inflammation/immunology , Mice
20.
Stem Cells ; 32(2): 473-86, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23939807

ABSTRACT

Stroke is a leading cause of long-lasting disability in humans. However, currently there are still no effective therapies available for promoting stroke recovery. Recent studies have shown that the adult brain has the capacity to regenerate neurons after stroke. Although this neurogenic response may be functionally important for brain repair after injury, the mechanisms underlying stroke-induced neurogenesis are not known. Caspase-3 is a major executioner and has been identified as a key mediator of neuronal death in the acute stage of stroke. Recently, however, accumulating data indicate that caspase-3 also participates in various biological processes that do not cause cell death. Here, we show that cleaved caspase-3 was increased in newborn neuronal precursor cells (NPCs) in the subventricular zone (SVZ) and the dentate gyrus during the period of stroke recovery, with no evidence of apoptosis. We observed that cleaved caspase-3 was expressed by NPCs and limited its self-renewal without triggering apoptosis in cultured NPCs from the SVZ of ischemic mice. Moreover, we revealed that caspase-3 negatively regulated the proliferation of NPCs through reducing the phosphorylation of Akt. Importantly, we demonstrated that peptide inhibition of caspase-3 activity significantly promoted the proliferation and migration of SVZ NPCs and resulted in a significant increase in subsequent neuronal regeneration and functional recovery after stroke. Together, our data identify a previously unknown caspase-3-dependent mechanism that constrains stroke-induced endogenous neurogenesis and should revitalize interest in targeting caspase-3 for treatment of stroke.


Subject(s)
Caspase 3/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Stem Cells/metabolism , Stroke/therapy , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Cells, Cultured , Humans , Mice , Neurons/cytology , Recovery of Function , Stem Cells/cytology , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...