Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 406: 131086, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977036

ABSTRACT

Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.57 % of PCA (pH = 8, 70 mg/L), and 20 mg/L aniline as the co-substrate improved the degradation efficiency by 12.50 %. Further, the response and co-metabolism mechanism of CA-1 to PCA were elucidated. The results revealed that PCA caused deformation and damage on the surface of CA-1, and the -OH belonging to polysaccharides and proteins offered adsorption sites for the contact between CA-1 and PCA. Subsequently, PCA entered the cell through transporters and was degraded by various oxidoreductases accompanied by deamination, hydroxylation, and ring-cleavage reactions. Thus, the key metabolite 4-chlorocatechol was identified and two PCA degradation pathways were proposed. Besides, aniline further enhanced the antioxidant capacity of CA-1, stimulated the expression of catechol 2,3-dioxygenase and promoted meta-cleavage efficiency of PCA. The findings provide new insights into the treatment of PCA-aniline co-pollution.


Subject(s)
Aniline Compounds , Biodegradation, Environmental , Pseudomonas , Aniline Compounds/metabolism , Pseudomonas/metabolism , Catechols/metabolism , Antioxidants/metabolism , Catechol 2,3-Dioxygenase/metabolism
2.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502272

ABSTRACT

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Subject(s)
Petroleum , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Surface-Active Agents/chemistry , Glycolipids/chemistry , Petroleum/metabolism
3.
Sci Total Environ ; 919: 170762, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340862

ABSTRACT

Microbial remediation of oil-contaminated groundwater is often limited by the low temperature and lack of nutrients in the groundwater environment, resulting in low degradation efficiency and a short duration of effectiveness. In order to overcome this problem, an immobilized composite microbial material and two types of slow release agents (SRA) were creatively prepared. Three oil-degrading bacteria, Serratia marcescens X, Serratia sp. BZ-L I1 and Klebsiella pneumoniae M3, were isolated from oil-contaminated groundwater, enriched and compounded, after which the biodegradation rate of the Venezuelan crude oil and diesel in groundwater at 15 °C reached 63 % and 79 %, respectively. The composite microbial agent was immobilized on a mixed material of silver nitrate-modified zeolite and activated carbon with a mass ratio of 1:5, which achieved excellent oil adsorption and water permeability performance. The slow release processes of spherical and tablet SRAs (SSRA, TSRA) all fit well with the Korsmeyer-Peppas kinetic model, and the nitrogen release mechanism of SSRA N2 followed Fick's law of diffusion. The highest oil removal rates by the immobilized microbial material combined with SSRA N2 and oxygen SRA reached 94.9 % (sand column experiment) and 75.1 % (sand tank experiment) during the 45 days of remediation. Moreover, the addition of SRAs promoted the growth of oil-degrading bacteria based on microbial community analysis. This study demonstrates the effectiveness of using immobilized microbial material combined with SRAs to achieve a high efficiency and long-term microbial remediation of oil contaminated shallow groundwater.


Subject(s)
Groundwater , Microbiota , Water Pollutants, Chemical , Sand , Biodegradation, Environmental , Bacteria/metabolism , Groundwater/microbiology , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 31(7): 10802-10817, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212565

ABSTRACT

Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Petroleum/metabolism , Soil Microbiology , Hydrocarbons/metabolism
5.
Adv Mater ; 36(9): e2307490, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939231

ABSTRACT

Photocatalytic technology based on carbon nitride (C3 N4 ) offers a sustainable and clean approach for hydrogen peroxide (H2 O2 ) production, but the yield is severely limited by the sluggish hot carriers due to the weak internal electric field. In this study, a novel approach is devised by fragmenting bulk C3 N4  into smaller pieces (CN-NH4 ) and then subjecting it to a directed healing process to create multiple order-disorder interfaces (CN-NH4 -NaK). The resulting junctions in CN-NH4 -NaK significantly boost charge dynamics and facilitate more spatially and orderly separated redox centers. As a result, CN-NH4 -NaK demonstrates outstanding photosynthesis of H2 O2 via both two-step single-electron and one-step double-electron oxygen reduction pathways, achieving a remarkable yield of 16675 µmol h-1  g-1 , excellent selectivity (> 91%), and a prominent solar-to-chemical conversion efficiency exceeding 2.3%. These remarkable results surpass pristine C3 N4 by 158 times and outperform previously reported C3 N4 -based photocatalysts. This work represents a significant advancement in catalyst design and modification technology, inspiring the development of more efficient metal-free photocatalysts for the synthesis of highly valued fuels.

6.
J Hazard Mater ; 465: 133193, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38103298

ABSTRACT

Electro-Fenton (EF) is considered to be an effective technology for the purification of organic wastewater containing antibiotics, but the construction of accessible and efficient heterogeneous EF catalytic materials still faces challenges. In this study, an iron foam-derived electrode (FeOx/if-400) was prepared by a simple method (chemical oxidation combined heat treatment). The fabricated electrode presented great EF degradation efficiency under wide pH range (almost completely removing 50 mg L-1 TNZ within 60 min) and maintained great stability after consecutive operation (>95% removal after six cycles). Also, the FeOx/if-400 electrode showed good purification ability for pharmaceutical wastewater as evaluated by the quadrupole time-of-flight mass spectrometry and the three-dimensional excitation-emission matrix fluorescence spectroscopy. Based on experimental results, characterization analysis, and density functional theory (DFT) calculations, the EF reaction mechanism of FeOx/if-400 electrode and the organics degradation pathways in simulated and real matrices were proposed. Significantly, the biotoxicity assessment of the degradation intermediate products was revealed by ECOSAR software and relative inhibition of E. coli, which fully proved the environmental friendliness of the EF process by the FeOx/if-400 cathode. This work provides a green and effective EF system, showing a promising application potential in the field of organic wastewater treatment containing antibiotic contaminants.


Subject(s)
Ferric Compounds , Water Pollutants, Chemical , Water Purification , Wastewater , Iron/chemistry , Escherichia coli , Anti-Bacterial Agents , Oxidation-Reduction , Electrodes , Water Purification/methods , Pharmaceutical Preparations , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry
7.
J Environ Manage ; 351: 119841, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109828

ABSTRACT

The combination of organic and heavy metal pollutants can be effectively and sustainably remediated using bioremediation, which is acknowledged as an environmentally friendly and economical approach. In this study, bacterial agent YH was used as the research object to explore its potential and mechanism for bioremediation of pyrene-heavy metal co-contaminated system. Under the optimal conditions (pH 7.0, temperature 35°C), it was observed that pyrene (PYR), Pb(II), and Cu(II) were effectively eliminated in liquid medium, with removal rates of 43.46%, 97.73% and 81.60%, respectively. The microscopic characterization (SEM/TEM-EDS, XPS, XRD and FTIR) results showed that Pb(II) and Cu(II) were eliminated by extracellular adsorption and intracellular accumulation of YH. Furthermore, the presence of resistance gene clusters (cop, pco, cus and pbr) plays an important role in the detoxification of Pb(II) and Cu(II) by strains YH. The degradation rate of PYR reached 72.51% in composite contaminated soil, which was 4.33 times that of the control group, suggesting that YH promoted the dissipation of pyrene. Simultaneously, the content of Cu, Pb and Cr in the form of F4 (residual state) increased by 25.17%, 6.34% and 36.88%, respectively, indicating a decrease in the bioavailability of heavy metals. Furthermore, YH reorganized the microbial community structure and enriched the abundance of hydrocarbon degradation pathways and enzyme-related functions. This study would provide an effective microbial agent and new insights for the remediation of soil and water contaminated with organic pollutants and heavy metals.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Lead , Soil Pollutants/chemistry , Metals, Heavy/analysis , Biodegradation, Environmental , Pyrenes , Soil/chemistry
8.
Micromachines (Basel) ; 14(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004964

ABSTRACT

Cantilever-beam-type PVDF (Polyvinylidene Fluoride) piezoelectric film sensors are commonly utilized for vibration signal detection due to their simple structures and ease of processing. Traditional cantilevered PVDF piezoelectric film sensors are susceptible to the influence of the second-order vibration mode and have a low lateral stress distribution at the free end, which limit their measurement bandwidth and sensitivity. This study is on the design of a dual-cantilever PVDF piezoelectric film sensor based on the principle of cantilevered piezoelectric film sensors. The results of the experiments indicate that, compared to a typical single-arm piezoelectric cantilever beam vibration sensor, the developed sensor has a longer second-order natural frequency that ranges from 112 Hz to 453 Hz, while the first-order natural frequency is maintained at around 12 Hz. This leads to a better ratio of the second-order natural frequency to the first-order natural frequency and a wider frequency response range. At the same time, the sensitivity is increased by a factor of 3.48.

9.
Environ Sci Pollut Res Int ; 30(48): 105685-105699, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37715914

ABSTRACT

In this work, efficient Fenton strategy have been proposed for degradation of shale gas fracturing flow-back wastewater using the spherical Fe/Al2O3 supported catalyst. Prior to actual fracturing fluid treatment, the typical model wastewaters such as p-nitrophenol and polyacrylamide were employed to evaluate the catalytic properties of prepared catalyst, and then Fenton treatment of the shale gas fracturing flow-back wastewater was performed on the self-assembled catalytic degradation reactor for continuous flow purification. Results showed that under the conditions of 0.25 mol L-1 impregnating concentration, pH 4, 50 g L-1 catalyst and 0.75 mL L-1 30% H2O2, the removal efficiency of p-nitrophenol and polyacrylamide reached 74% and 61%, respectively, while the COD removal of fracturing flow-back fluid was approximately 48% with the residual 88 mg L-1 COD, meeting the emission standards of the integrated wastewater discharge standard (GB 8978-1996, COD < 100 mg L-1). This work offers new alternatives for Fenton treatment of real wastewater by efficient and low-cost supported catalysts.


Subject(s)
Wastewater , Water Pollutants, Chemical , Natural Gas , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Minerals , Oxidation-Reduction
10.
Chemosphere ; 338: 139540, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480960

ABSTRACT

In the Fenton-like processes, the resources that exist in the system itself (e.g., dissolved oxygen, electron-rich pollutants) are often overlooked. Herein, a novel CuCo-LDO/CN composite catalyst with a strong "metal-π" effect was fabricated by in situ calcination which could activate dissolved oxygen to generate active oxygen species and degrade the electron-rich pollutants directly. The CuCo-LDO/CN (1:10) with the largest specific surface aera, most C-O-M bonds and least oxygen vacancies exhibited the best catalytic performance for tetracycline (TC)degradation (TC removal efficiency 93.2% and mineralization efficiency 40%, respectively, after 40 min at neutral pH) compared to CuCo-LDO and other CuCo-LDO/CN composite catalysts. In the absence of H2O2, dissolved oxygen could be activated by the catalyst to generate O2·-and ·OH, which contributed to approximately 20.7% of TC degradation, providing a faster and cost-effective way for TC removal from wastewater. While in the presence of H2O2, it was activated by CuCo-LDO/CN to generate·OH as the dominant reactive oxygen species and meanwhile TC transferred electrons to H2O2 through C-O-M bonds, accelerating the Cu+/Cu2+ and Co2+/Co3+ redox cycles. The possible degradation pathways of TC were proposed, and the environmental hazard of TC is greatly mitigated according to toxicity prediction.


Subject(s)
Environmental Pollutants , Heterocyclic Compounds , Hydrogen Peroxide/chemistry , Oxygen , Anti-Bacterial Agents , Tetracycline/chemistry , Catalysis
11.
Chemosphere ; 333: 138868, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37160170

ABSTRACT

Chemical fingerprinting is essential for identifying the presence and responding to oil spills that frequently contaminate the groundwater environment of refineries. In this study, crude oil and oil products from the atmospheric and vacuum distillation units of a refinery were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate their chemical variability before and after refinery. A series of experiments involving evaporation and soil column penetration were conducted to simulate refined oil spilling into groundwater and determine appropriate characteristic ratios (CRs) for principal component analysis (PCA) for oil source identification. The simulated study demonstrated that all products had bell-shaped n-alkane distributions, with dominant peaks that remained unchanged or shifted towards longer chain lengths compared to the source oil. Similarly, naphthalene and dibenzothiophene series remained the main PAH components like the source oil. Ten relatively stable CRs were selected for PCA to identify different oil products through the simulated experiments. The chosen CRs were then utilized to identify the sources for two groundwater oil spills recently occurred, one that occurred in an oil depot area, and another near a continuous catalytic reforming unit in a refinery. This study showed that the components with long-chain n-alkanes (n ≥ C18), pristane, phytane, and phenanthrene and dibenzothiophene series PAHs played an important role in the identification of refined oil products spilling into the groundwater environment. The selected CRs provide an effective tool for rapid and accurate identification of oil spills, especially for newly occurring spills in the groundwater environment, which can aid in developing appropriate response strategies.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Oils/chemistry , Petroleum/analysis , Thiophenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Alkanes , Petroleum Pollution/analysis
12.
Chemosphere ; 330: 138619, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37031841

ABSTRACT

Biodegradable candelilla wax (CW) was creatively used for hydrophobic modification of coal fly ash cenospheres (FACs), a waste product from thermal power plants, and a new spherical hollow particulate adsorbent with fast oil adsorption rate and easy agglomeration was prepared. CW was confirmed to physically coat FACs and the optimum mass of wax added to 3 g of FACs was 0.05 g. From a series of batch scale experiments, CW-FACs were found to adsorb oil, reaching adsorption efficiency of 80.6% within 10 s, and aggregate into floating clumps which were easily removed from the water's surface. The oil adsorption efficiency was highly dependent on hydrophobicity of the used adsorbent, the adsorption of Venezuela oil onto CW-FACs was found to be a homogenous monolayer, and the capacity and intensity of the adsorption decreased as temperature increased from 10 to 40 °C. The Langmuir isotherm model was the best fit, with the maximum adsorption capacity achieved at 649.38 mg/g. CW-FACs were also found to be highly stable in concentrated acid, alkaline and salt solutions, as well as for spills of different oil products. Furthermore, the retention rate of the oil adsorption capacity of the CW-FACs after 6 cycles of adsorption-extraction was as high as 93.2%. Therefore, CW-FACs can be widely used, easily recycled, and reused for marine oil spill remediation, which is also a good alternative disposal solution for FACs.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Coal Ash/chemistry , Coal , Water Pollutants, Chemical/analysis , Organic Chemicals , Adsorption
13.
Environ Res ; 223: 115465, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36773642

ABSTRACT

Bioaugmentation (BA) of oil-contaminated soil by immobilized microorganisms is considered to be a promising technology. However, available high-efficiency microbial agents remain very limited. Therefore, we prepared a SA/GO/C5 immobilized gel pellets by embedding the highly efficient crude oil degrading bacteria Bacillus C5 in the SA/GO composite material. The optimum preparation conditions of SA/GO/C5 immobilized gel pellets were: SA 3.0%, GO 25.0 µg/mL, embedding amount of C5 6%, water bath temperature of 50°C, CaCl2 solution concentration 3% and cross-linking time 20 h. BA experiments were carried out on crude oil contaminated soil to explore the removal effect of SA/GO/C5 immobilized pellets. The results showed that the SA/GO/C5 pellets exhibited excellent mechanical strength and specific surface area, which facilitated the attachment and growth of the Bacillus C5. Compared with free bacteria C5, the addition of SA/GO/C5 significantly promoted the removal of crude oil in soil, reaching 64.92% after 30 d, which was 2.1 times the removal rate of C5. The addition of SA/GO/C5 promoted the abundance of soil exogenous Bacillus C5 and indigenous crude oil degrading bacteria Alcanivorax and Marinobacter. In addition, the enrichment of hydrocarbon degradation-related functional abundance was predicted by PICRUSt2 in the SA/GO/C5 treatment group. This study demonstrated that SA/GO/C5 is an effective method for remediating crude oil-contaminated soil, providing a basis and option for immobilized microorganisms bioaugmentation to remediate organic contaminated soil.


Subject(s)
Bacillus , Microbiota , Petroleum , Soil Pollutants , Bacillus/metabolism , Biodegradation, Environmental , Petroleum/metabolism , Hydrocarbons , Soil Pollutants/analysis , Bacteria/metabolism , Soil/chemistry , Soil Microbiology
14.
Nanomaterials (Basel) ; 13(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770460

ABSTRACT

Photocatalysis plays a vital role in sustainable energy conversion and environmental remediation because of its economic, eco-friendly, and effective characteristics. Nitrogen-rich graphitic carbon nitride (g-C3N5) has received worldwide interest owing to its facile accessibility, metal-free nature, and appealing electronic band structure. This review summarizes the latest progress for g-C3N5-based photocatalysts in energy and environmental applications. It begins with the synthesis of pristine g-C3N5 materials with various topologies, followed by several engineering strategies for g-C3N5, such as elemental doping, defect engineering, and heterojunction creation. In addition, the applications in energy conversion (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (NO purification and aqueous pollutant degradation) are discussed. Finally, a summary and some inspiring perspectives on the challenges and possibilities of g-C3N5-based materials are presented. It is believed that this review will promote the development of emerging g-C3N5-based photocatalysts for more efficiency in energy conversion and environmental remediation.

15.
Environ Pollut ; 322: 121182, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736570

ABSTRACT

Peroxydisulfate (PDS) based advanced oxidation processes (AOPs) are widely used for the degradation of pharmaceutical and personal care products (PPCP) in wastewater treatment. In this study, a Fe-doped g-C3N5 (Fe@g-C3N5) was synthesized as a photocatalyst for catalyzing the PDS-based AOPs to degrade tetracycline hydrochloride (TH) at pH 3 and Naproxen (NPX) at pH 7. The photocatalytic performance of Fe@g-C3N5 was 19% and 67% higher than g-C3N5 and g-C3N4 for degradation of TH at pH 3, respectively, while it was 21% and 35% at pH 7. The Fe:N ratio in Fe@g-C3N5, was calculated as 1:3.79, indicating that the doped Fe atom formed a FeN4 structure with an adjacent two-layer graphite structure of g-C3N5, which improved the charge separation capacity of g-C3N5 and act as a new reaction center that can efficiently combine and catalyze the PDS to radicals. Although the intrinsic photo-degradation performance is weak, the photocatalytic performance of Fe@g-C3N5 has great room for the improvement and application in wastewater treatment.


Subject(s)
Graphite , Water Purification , Tetracycline , Catalysis , Pharmaceutical Preparations
16.
J Environ Manage ; 331: 117246, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36642048

ABSTRACT

Bioaugmentation (BA) and biostimulation (BS) synergistic remediation is an effective remediation strategy for oil-contaminated soil. In this study, the optimal combination system of composite microbial agent TY (Achromobacter: Pseudomona = 2:1) and dehydrocoenzyme activator (NaNO3 (7.0 g/L), (NH4)2HPO4 (1.0 g/L), riboflavin (6.0 mg/L)) was screened. Under the best combination system, the degradation rate of crude oil in oil-contaminated soil reached 79.44% after 60 d, which was 1.74 times and 1.23 times higher than that of compound microbial agent TY treatment and dehydrogenase activator treatment, respectively. In addition, a highly efficient combination system was found to target the degradation of oil C10-C28 fractions by gas chromatography (GC). The increased abundance of dehydrogenase coenzymes such as flavin nucleotides (FAD and FMN), coenzyme I (NAD+, Co I) and coenzyme II (NADP+, Co II) as well as dioxygenases and monooxygenases promote the degradation of crude oil. Furthermore, the dominant genera at the genus level in soil were analyzed by high-throughput sequencing, which were Nocardioides (46.48%-56.07%), Gordonia (11.40%-14.61%), Intrasporangiaceae (5.05%-10.58%), Pseudomonas (1.39%-1.92%) and Dietzia (0.64%-2.77%). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis showed that the abundance of genes associated with crude oil degradation such as ABC transporters (2.89%), fatty acid (1.04%), carbon metabolism (4.5%) and aromatic compound (0.92%) was assigned enhanced after 60 d of remediation. These results indicated that the combination system of the compound bacterium TY and the dehydrocoenzyme activator is a propective option for the bioremediation of oil-contaminated soil.


Subject(s)
Biodegradation, Environmental , Petroleum Pollution , Soil Pollutants , Hydrocarbons , Oxidoreductases , Phylogeny , Pseudomonas/metabolism , Soil , Soil Microbiology , Soil Pollutants/metabolism
17.
J Hazard Mater ; 447: 130808, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36669400

ABSTRACT

Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Petroleum/metabolism , Soil Microbiology , Alkanes/metabolism , Soil , Soil Pollutants/metabolism
18.
Environ Sci Pollut Res Int ; 30(13): 35670-35682, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538219

ABSTRACT

The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.


Subject(s)
Environmental Pollutants , Groundwater , Petroleum , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Groundwater/chemistry , Water Pollution , Hydrocarbons/chemistry , Water
19.
Environ Sci Pollut Res Int ; 30(1): 2164-2178, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35931846

ABSTRACT

VOCs emission reduction in the petroleum and petrochemical industry is a hot and difficult topic at present. The single method may not be able to meet the actual treatment status. Therefore, the adsorption coupled photocatalytic degradation technology was used to remove VOCs. Phosphorus-doped carbon nitride (PCN) and PCN/TiO2 were prepared by hydrothermal synthesis and sol-gel method, and then PCN/TiO2/Zn(OAc)2-ACF composites were prepared by ultrasonic impregnation on zinc acetate modified activated carbon fibers (Zn(OAc)2-ACF). The removal efficiency of n-hexane by composite materials was explored in a self-made reactor, and the factors affecting removal efficiency, removal mechanism, and possible ways of degradation were investigated. The results showed that under the optimum reaction conditions (initial concentration of n-hexane 200 mg/m3, space velocity 1000 h-1, light intensity 24 W, mass fraction of doped PCN 6%, loading twice, calcination temperature 450 °C), PCN/TiO2/Zn(OAc)2-ACF composite has the highest removal efficiency of n-hexane (90.2%). The adsorption capacity of the composites after doping the P element was 215.3 mg/g, which did not enhance the adsorption performance compared with that before doping, but the removal rate of n-hexane was higher. This showed that doping P element was helpful to enhance the photocatalytic activity of the composites.


Subject(s)
Gases , Titanium , Adsorption , Zinc , Phosphorus , Catalysis
20.
J Colloid Interface Sci ; 631(Pt A): 133-142, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36375298

ABSTRACT

Photoelectrochemical (PEC) reaction with efficient, stable, and cost-effective photocathodes using non-precious metals will be one of the most environmentally friendly technologies for hydrogen (H2) generation under the worldwide pressure for carbon neutrality. Herein, a new 3-dimentional (3D) SiNWs@MoS2/NiS2 photocathode was designed and synthesized. Defect-rich MoS2/NiS2 nanosheets on silicon nanowires (SiNWs) provide more active sites to promote charge transfer and photo-generated electron-hole separation. Meanwhile, the 3D structure of the photocathode provides an effective charge transfer mode and an open channel for rapid H2 release. The SiNWs@MoS2/NiS2 photocathode exhibits the maximum photocurrent density (21.4 mA·cm-2 at 0.9 V vs. RHE), highest H2 production rate (183 µmol·h-1), smallest diffusion resistance (34.7 Ω), and excellent catalytic stability for more than 10 h at pH = 7. Based on density function theory calculation, the MoS2/NiS2 nanosheets are conducive to chemical adsorption of H2 intermediates, which are crucial for the maintenance of the composite photocathode in PEC H2 production.

SELECTION OF CITATIONS
SEARCH DETAIL