Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4329, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773128

ABSTRACT

The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,ß-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,ß-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,ß-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,ß-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.

2.
3D Print Addit Manuf ; 11(1): 261-275, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389682

ABSTRACT

In this work, selective laser melting (SLM) technology was applied to directly realize the in situ synthesis of medium manganese Mn-xCu (x = 30-40 wt.%) alloys based on the blended elemental powders. The effects of heat treatment on the microstructural evolution and damping properties of the SLMed Mn-xCu alloys were investigated. The metastable miscibility gap was studied by thermodynamic modeling and microhardness measurement. The results showed that γ-(Mn, Cu) phase with dendritic arm spacing (DAS) of 0.9-1.2 µm was the main constituent phase in the as-SLMed alloys, which was one to two orders of magnitude finer than those of the as-cast samples. Aging at 400-480°C for the Mn-30%Cu or 430°C for Mn-40%Cu alloys can induce spinodal decomposition, martensitic transformation, and α-phase precipitation, whose direct evidence was provided for the first time by transmission electron microscopy and 3D atom probe tomography in the work. The miscibility gap obtained from thermodynamics calculation was basically consistent with the microhardness results for the SLMed Mn-xCu alloys. Solution and aging (SA) treatment can improve the microstructure, tensile and damping properties of the SLMed Mn-xCu alloys more obviously than aging treatment. A 2.3-2.8 and 4.3-4.5 times increase was produced in damping capacity in the aged SLMed and SLMed+SAed Mn-xCu samples, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL