Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 422
Filter
1.
J Parkinsons Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728202

ABSTRACT

Background: Previous studies have demonstrated the importance of the locus coeruleus (LC) in sleep-wake regulation. Both essential tremor (ET) and Parkinson's disease (PD) share common sleep disorders, such as poor quality of sleep (QoS). LC pathology is a feature of both diseases. A question arises regarding the contribution of LC degeneration to the occurrence of poor QoS. Objective: To evaluate the association between LC impairment and sleep disorders in ET and PD patients. Methods: A total of 83 patients with ET, 124 with PD, and 83 healthy individuals were recruited and divided into ET/PD with/without poor QoS (Sle/NorET and Sle/NorPD) subgroups according to individual Pittsburgh Sleep Quality Index (PSQI) score. Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and free-water imaging derived from diffusion MRI were performed. Subsequently, we evaluated the association between contrast-to-noise ratio of LC (CNRLC) and free-water value of LC (FWLC) with PSQI scores in ET and PD groups. Results: CNRLC was significantly lower in ET (p = 0.047) and PD (p = 0.018) than in healthy individuals, whereas no significant difference was found in FWLC among the groups. No significant differences were observed in CNR/FWLC between patients with/without sleep disorders after multiple comparison correction. No correlation was identified between CNR/FWLC and PSQI in ET and PD patients. Conclusions: LC degeneration was observed in both ET and PD patients, implicating its involvement in the pathophysiology of both diseases. Additionally, no significant association was observed between LC integrity and PSQI, suggesting that LC impairment might not directly relate to overall QoS.

2.
Int J Med Sci ; 21(6): 1103-1116, 2024.
Article in English | MEDLINE | ID: mdl-38774759

ABSTRACT

Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.


Subject(s)
Amino Acid Transport System y+ , Biomarkers, Tumor , Colorectal Neoplasms , Ferroptosis , Gene Expression Regulation, Neoplastic , Nomograms , Humans , Ferroptosis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Prognosis , Biomarkers, Tumor/genetics , Amino Acid Transport System y+/genetics , Male , Female , Cyclin-Dependent Kinase Inhibitor p16/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Middle Aged , Gene Expression Profiling , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Aged
3.
Food Chem ; 451: 139512, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38718641

ABSTRACT

In view of the merits of all-purpose wheat flour (APWF) to soft wheat flour (SWF) in cost and protein supply, the feasibility of heat-moisture treatment (HMT, 19% moisture for 1 h at 60, 80 and 100 °C, respectively) to modify APWF as a substitute SWF in making short dough biscuits was explored. For underlying mechanisms, on the one hand, HMT reduced the hydration capacity of damaged starch particles by coating them with denatured proteins. On the other hand, HMT at 80 °C and 100 °C significantly denatured gluten proteins to form protein aggregates, highly weakening the gluten network in dough. These two aspects jointly conferred APWF dough with higher deformability and therefore significantly improved the qualities of biscuits. Moreover, the qualities of biscuits from APWF upon HMT-100 °C were largely comparable to that from SWF, even higher values were concluded in spread ratio, volume, specific volume and consumer acceptance.

4.
Front Oncol ; 14: 1375334, 2024.
Article in English | MEDLINE | ID: mdl-38638858

ABSTRACT

Neoadjuvant therapy has been widely employed in the treatment of rectal cancer, demonstrating its utility in reducing tumor volume, downstaging tumors, and improving patient prognosis. It has become the standard preoperative treatment modality for locally advanced rectal cancer. However, the efficacy of neoadjuvant therapy varies significantly among patients, with notable differences in tumor regression outcomes. In some cases, patients exhibit substantial tumor regression, even achieving pathological complete response. The assessment of tumor regression outcomes holds crucial significance for determining surgical approaches and establishing safe margins. Nonetheless, current research on tumor regression patterns remains limited, and there is considerable controversy surrounding the determination of a safe margin after neoadjuvant therapy. In light of these factors, this study aims to summarize the primary patterns of tumor regression observed following neoadjuvant therapy for rectal cancer, categorizing them into three types: tumor shrinkage, tumor fragmentation, and mucinous lake formation. Furthermore, a comparison will be made between gross and microscopic tumor regression, highlighting the asynchronous nature of regression in the two contexts. Additionally, this study will analyze the safety of non-surgical treatment in patients who achieve complete clinical response, elucidating the necessity of surgical intervention. Lastly, the study will investigate the optimal range for safe surgical resection margins and explore the concept of a safe margin distance post-neoadjuvant therapy.

5.
Eur Radiol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485749

ABSTRACT

OBJECTIVES: To evaluate the performance of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM). MATERIALS AND METHODS: In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison. RESULTS: The validation dataset results revealed that the performance of a single NODDI parameter map model was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimination (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar. CONCLUSION: The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM. CLINICAL RELEVANCE STATEMENT: The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic features that describe tumor heterogeneity. KEY POINTS: • The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for preoperative discrimination between glioblastoma and solitary brain metastasis. • Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best in distinguishing the two types of tumors. • The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.

6.
J Hazard Mater ; 469: 133675, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38508109

ABSTRACT

When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.


Subject(s)
Nitrates , Shewanella , Nitrates/metabolism , Chromates/metabolism , Oxidation-Reduction , Electrons , Chromium/metabolism , Shewanella/metabolism , Phenazines , Riboflavin/metabolism
7.
Front Oncol ; 14: 1345810, 2024.
Article in English | MEDLINE | ID: mdl-38450187

ABSTRACT

Pancreatic cancer, an exceptionally malignant tumor of the digestive system, presents a challenge due to its lack of typical early symptoms and highly invasive nature. The majority of pancreatic cancer patients are diagnosed when curative surgical resection is no longer possible, resulting in a poor overall prognosis. In recent years, the rapid progress of Artificial intelligence (AI) in the medical field has led to the extensive utilization of machine learning and deep learning as the prevailing approaches. Various models based on AI technology have been employed in the early screening, diagnosis, treatment, and prognostic prediction of pancreatic cancer patients. Furthermore, the development and application of three-dimensional visualization and augmented reality navigation techniques have also found their way into pancreatic cancer surgery. This article provides a concise summary of the current state of AI technology in pancreatic cancer and offers a promising outlook for its future applications.

8.
Neuron ; 112(9): 1473-1486.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447577

ABSTRACT

Phasic (fast) and tonic (sustained) inhibition of γ-aminobutyric acid (GABA) are fundamental for regulating day-to-day activities, neuronal excitability, and plasticity. However, the mechanisms and physiological functions of glial GABA transductions remain poorly understood. Here, we report that the AMsh glia in Caenorhabditis elegans exhibit both phasic and tonic GABAergic signaling, which distinctively regulate olfactory adaptation and neuronal aging. Through genetic screening, we find that GABA permeates through bestrophin-9/-13/-14 anion channels from AMsh glia, which primarily activate the metabolic GABAB receptor GBB-1 in the neighboring ASH sensory neurons. This tonic action of glial GABA regulates the age-associated changes of ASH neurons and olfactory responses via a conserved signaling pathway, inducing neuroprotection. In addition, the calcium-evoked, vesicular glial GABA release acts upon the ionotropic GABAA receptor LGC-38 in ASH neurons to regulate olfactory adaptation. These findings underscore the fundamental significance of glial GABA in maintaining healthy aging and neuronal stability.


Subject(s)
Adaptation, Physiological , Caenorhabditis elegans , Neuroglia , gamma-Aminobutyric Acid , Animals , gamma-Aminobutyric Acid/metabolism , Neuroglia/metabolism , Neuroglia/physiology , Adaptation, Physiological/physiology , Smell/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Signal Transduction/physiology , Cellular Senescence/physiology , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Aging/physiology , Aging/metabolism , Receptors, GABA-A/metabolism
9.
Angew Chem Int Ed Engl ; 63(21): e202402176, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38470010

ABSTRACT

Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.

10.
Parkinsonism Relat Disord ; 123: 106559, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38513448

ABSTRACT

BACKGROUND: Rest tremor is a movement disorder commonly found in diseases like Parkinson's disease (PD) and essential tremor (ET). Rest tremor typically shows slower progression in PD, but more severe progression in ET. However, the underlying white matter organization of rest tremor behind PD and ET remains unclear. METHODS: This study included 57 ET patients (40 without rest tremor (ETWR), 17 with rest tremor (ETRT)), 68 PD patients (34 without rest tremor (PDWR), 34 with rest tremor (PDRT)), and 62 normal controls (NC). Fixel-based analysis was used to evaluate the structural changes of white matter in rest tremor in these different diseases. RESULTS: The fiber-bundle cross-section (FC) of the right non-decussating dentato-rubro-thalamic tract and several fibers outside the dentato-rubro-thalamic pathway in ETWR were significantly higher than that in NC. The fiber density and cross-section of the left nigro-pallidal in PDWR is significantly lower than that in NC, while the FC of bilateral nigro-pallidal in PDRT is significantly lower than that in NC. CONCLUSION: ET patients with pure action tremor showed over-activation of fiber tracts. However, when superimposed with rest tremor, ET patients no longer exhibited over-activation of fiber tracts, but rather showed a trend of fiber tract damage. Except for the nigro-pallidal degeneration in all PD, PDRT will not experience further deterioration in fiber organization. These results provide important insights into the unique effects of rest tremor on brain fiber architecture in ET and PD.

11.
Heliyon ; 10(4): e26304, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384571

ABSTRACT

Objective: Dysregulation of the immune system plays a vital role in the pathological process of vascular dementia, and this study aims to spot critical biomarkers and immune infiltrations in vascular dementia employing a bioinformatics approach. Methods: We acquired gene expression profiles from the Gene Expression Database. The gene expression data were analyzed using the bioinformatics method to identify candidate immune-related central genes for the diagnosis of vascular dementia. and the diagnostic value of nomograms and Receiver Operating Characteristic (ROC) curves were evaluated. We also examined the role of the VaD hub genes. Using the database and potential therapeutic drugs, we predicted the miRNA and lncRNA controlling the Hub genes. Immune cell infiltration was initiated to examine immune cell dysregulation in vascular dementia. Results: 1321 immune genes were included in the combined immune dataset, and 2816 DEGs were examined in GSE122063. Twenty potential genes were found using differential gene analysis and co-expression network analysis. PPI network design and functional enrichment analysis were also done using the immune system as the main subject. To create the nomogram for evaluating the diagnostic value, four potential core genes were chosen by machine learning. All four putative center genes and nomograms have a solid diagnostic value (AUC ranged from 0.81 to 0.92). Their high confidence level became unquestionable by validating each of the four biomarkers using a different dataset. According to GeneMANIA and GSEA enrichment investigations, the pathophysiology of VaD is strongly related to inflammatory responses, drug reactions, and central nervous system degeneration. The data and Hub genes were used to construct a ceRNA network that includes three miRNAs, 90 lncRNA, and potential VaD therapeutics. Immune cells with varying dysregulation were also found. Conclusion: Using bioinformatic techniques, our research identified four immune-related candidate core genes (HMOX1, EBI3, CYBB, and CCR5). Our study confirms the role of these Hub genes in the onset and progression of VaD at the level of immune infiltration. It predicts potential RNA regulatory pathways control VaD progression, which may provide ideas for treating clinical disease.

12.
Food Res Int ; 180: 114089, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395585

ABSTRACT

Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.


Subject(s)
Gastrointestinal Microbiome , Selenium , Selenium/metabolism , Antioxidants/metabolism , Fermentation , Selenious Acid , Fatty Acids, Volatile , Digestion
13.
Ann Bot ; 133(5-6): 697-710, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38230804

ABSTRACT

BACKGROUND AND AIMS: The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS: Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS: The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS: Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.


Subject(s)
Phylogeny , Phylogeography , Plastids , Polypodiaceae , Polypodiaceae/genetics , Polypodiaceae/classification , Plastids/genetics , Biological Evolution , Africa , Ferns/genetics , Ferns/classification , Evolution, Molecular
14.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227102

ABSTRACT

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Subject(s)
Essential Tremor , Spinocerebellar Ataxias , Humans , Essential Tremor/epidemiology , Essential Tremor/genetics , China/epidemiology , Spinocerebellar Ataxias/epidemiology , Spinocerebellar Ataxias/genetics , Nucleotides
15.
Food Chem X ; 21: 101134, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38292687

ABSTRACT

Apple peel is a typical lignocellulosic food by-product rich in functional components. In this work, apple peel was solid-state fermented with Aspergillus oryzae with an aim to modulate its composition and bioactivity. The results showed that A. oryzae fermentation substantially tailored the composition, improved the antioxidant activity and prebiotic potential of apple peel. Upon the fermentation, 1) free phenolics increased and antioxidant activity improved; 2) the pectin substances degraded significantly, along with a decrease in soluble dietary fiber while an increase in insoluble dietary fiber; 3) the in vitro fermentability increased as indicated by the increase in total acid production. The gut microbiota was shaped with more health-promoting potentials, such as higher abundances of Lactobacillus, Bifidobacterium, Megamonas and Prevotella-9 as well as lower abundances of Enterobacter and Echerichia-Shigella. This work is conducive to the modification of apple peel as a potential ingredient in food formulations.

16.
Int J Biol Macromol ; 254(Pt 3): 127869, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939773

ABSTRACT

There is an increasing demand for obtaining pectin from new sources. Red radish (Raphanus sativus L.) pomace pectin extracted by alkali was low-methoxyl pectin with esterification degree of 10.17 %, galacturonic acid content of 69.71 % (wt), and average molar weight of 78.59 kDa. The pectin primarily consisted of rhamnogalacturonan I and homogalacturonan domains. The predominant monosaccharides of the pectin were galacturonic acid (46.32 mol%), arabinose (16.03 mol%), galactose (10.46 mol%), and rhamnose (10.28 mol%), respectively. The red radish pomace pectin solution exhibited a shear-thinning behavior. NaCl could induce gelation of red radish pomace pectin, and the gel properties of red radish pomace pectin were considerably affected by the NaCl concentration. As the NaCl concentration (0.25-0.50 mol/L) increased, the rate of gelation accelerated, and the time to gelation point appeared earlier. There was an optimal NaCl concentration (0.50 mol/L) for the pectin to form a gel with the greatest solid-like properties, gel hardness (33.84 g) and water-holding capacity (62.41 %). Gelation force analysis indicated gel formation mainly caused by electrostatic shielding effect of Na+ and hydrogen bonding. This research could facilitate the applications of the red radish pomace pectin in the realm of edible hydrocolloids.


Subject(s)
Raphanus , Sodium Chloride , Pectins/analysis , Hexuronic Acids/analysis
17.
Int J Biol Macromol ; 257(Pt 1): 128543, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061530

ABSTRACT

Gel networks formed from biopolymers have intrigued rheological interest, especially in the food industry. Despite ubiquitous non-network biopolymer aggregation in real gel food systems, its fundamental rheological implications remain less understood. This study addresses this by preparing pectin-gelatin composite gels with dispersed or aggregated biopolymers and comparatively analyzing viscoelastic responses using rheometry. Subtle discrepancies in non-network biopolymer states were revealed through oscillatory shearing at different frequencies and amplitudes. Biopolymer aggregation in the network notably influenced loss tangent frequency dependency, particularly at high frequencies, elevating I3/I1 values and sensitizing the yield point. Non-network biopolymers weakened Payne effects and gel non-linearity. A combination of strain stiffening and shear thinning nonlinear responses characterized prepared gel systems. Aggregation of pectin and gelatin enhanced shear thinning, while strain stiffening was notable in highly aggregated pectin cases. This study enhances understanding of the link between non-network structural complexity and viscoelastic properties in oscillatory rheometry of food gels.


Subject(s)
Gelatin , Pectins , Pectins/chemistry , Gelatin/chemistry , Biopolymers/chemistry , Gels/chemistry , Food , Rheology
18.
J Adv Res ; 56: 125-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36940850

ABSTRACT

INTRODUCTION: The glymphatic system offers a perivascular pathway for the clearance of pathological proteins and metabolites to optimize neurological functions. Glymphatic dysfunction plays a pathogenic role in Parkinson's disease (PD); however, the molecular mechanism of glymphatic dysfunction in PD remains elusive. OBJECTIVE: To explore whether matrix metalloproteinase-9 (MMP-9)-mediated ß-dystroglycan (ß-DG) cleavage is involved in the regulation of aquaporin-4 (AQP4) polarity-mediated glymphatic system in PD. METHODS: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and A53T mice were used in this study. The glymphatic function was evaluated using ex vivo imaging. TGN-020, an AQP4 antagonist, was administered to investigate the role of AQP4 in glymphatic dysfunction in PD. GM6001, an MMP-9 antagonist, was administered to investigate the role of the MMP-9/ß-DG pathway in regulating AQP4. The expression and distribution of AQP4, MMP-9, and ß-DG were assessed using western blotting, immunofluorescence, and co-immunoprecipitation. The ultrastructure of basement membrane (BM)-astrocyte endfeet was detected using transmission electron microscopy. Rotarod and open-field tests were performed to evaluate motor behavior. RESULTS: Perivascular influx and efflux of cerebral spinal fluid tracers were reduced in MPTP-induced PD mice with impaired AQP4 polarization. AQP4 inhibition aggravated reactive astrogliosis, glymphatic drainage restriction, and dopaminergic neuronal loss in MPTP-induced PD mice. MMP-9 and cleaved ß-DG were upregulated in both MPTP-induced PD and A53T mice, with reduced polarized localization of ß-DG and AQP4 to astrocyte endfeet. MMP-9 inhibition restored BM-astrocyte endfeet-AQP4 integrity and attenuated MPTP-induced metabolic perturbations and dopaminergic neuronal loss. CONCLUSION: AQP4 depolarization contributes to glymphatic dysfunction and aggravates PD pathologies, and MMP-9-mediated ß-DG cleavage regulates glymphatic function through AQP4 polarization in PD, which may provide novel insights into the pathogenesis of PD.


Subject(s)
Aquaporins , Glymphatic System , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/ultrastructure , Matrix Metalloproteinase 9/metabolism , Glymphatic System/metabolism , Dopamine/metabolism , Aquaporins/metabolism
19.
Acad Radiol ; 31(3): 1036-1043, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690885

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to assess the value of diffusion kurtosis imaging (DKI)-based radiomics models in differentiating glioblastoma (GB) from single brain metastasis (SBM) and compare their diagnostic performance with that of routine magnetic resonance imaging (MRI) models. MATERIALS AND METHODS: A total of 110 patients who underwent DKI and were pathologically diagnosed with GB (n = 58) or SBM (n = 52) were enrolled in this study. Radiomics features were extracted from the manually delineated region of interest of the lesion. A training set for model development was constructed from the images of 88 random patients, and 22 patients were reserved for independent validation. Seven single-DKI-parametric models and a multi-DKI-parametric model were constructed using six classifiers, whereas four single-routine-sequence models (based on T2 weighted imaging, apparent diffusion coefficient, T2-dark-fluid, and contrast-enhanced T1 magnetization prepared rapid gradient echo) and a multisequence routine MRI model were constructed for comparison. Receiver operating characteristic curve analysis was conducted to assess the diagnostic performance. The areas under the curve (AUCs) of different models were compared using the DeLong test. RESULTS: The AUCs of the single-DKI-parametric models ranged from 0.800 to 0.933 (mean kurtosis [MK] model). The multi-DKI-parametric model had a slightly higher AUC (0.958) than the MK model; however, the difference was not statistically significant (P = 0.688). In comparison, the AUCs of the routine MRI models ranged from 0.633 to 0.733 (multisequence routine MRI model). The AUC of the multi-DKI-parametric model was significantly higher than that of the multisequence routine MRI model (P = 0.042). CONCLUSION: The multi-DKI-parametric radiomics model exhibited better performance than that of the single-DKI-parametric models and routine MRI models in distinguishing GB from SBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Radiomics , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology
20.
Eur J Neurol ; 31(3): e16167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009830

ABSTRACT

BACKGROUND AND PURPOSE: Several previous studies have shown that skin sebum analysis can be used to diagnose Parkinson's disease (PD). The aim of this study was to develop a portable artificial intelligence olfactory-like (AIO) system based on gas chromatographic analysis of the volatile organic compounds (VOCs) in patient sebum and explore its application value in the diagnosis of PD. METHODS: The skin VOCs from 121 PD patients and 129 healthy controls were analyzed using the AIO system and three classic machine learning models were established, including the gradient boosting decision tree (GBDT), random forest and extreme gradient boosting, to assist the diagnosis of PD and predict its severity. RESULTS: A 20-s time series of AIO system data were collected from each participant. The VOC peaks at a large number of time points roughly concentrated around 5-12 s were significantly higher in PD subjects. The gradient boosting decision tree model showed the best ability to differentiate PD from healthy controls, yielding a sensitivity of 83.33% and a specificity of 84.00%. However, the system failed to predict PD progression scored by Hoehn-Yahr stage. CONCLUSIONS: This study provides a fast, low-cost and non-invasive method to distinguish PD patients from healthy controls. Furthermore, our study also indicates abnormal sebaceous gland secretion in PD patients, providing new evidence for exploring the pathogenesis of PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Artificial Intelligence , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...