Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 19140, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160336

ABSTRACT

In recent years, researchers have taken the many-objective optimization algorithm, which can optimize 5, 8, 10, 15, 20 objective functions simultaneously, as a new research topic. However, the current research on many-objective optimization technology also encounters some challenges. For example: Pareto resistance phenomenon, difficult diversity maintenance. Based on the above problems, this paper proposes a many-objective evolutionary algorithm based on three states (MOEA/TS). Firstly, a feature extraction operator is proposed. It can extract the features of the high-quality solution set, and then assist the evolution of the current individual. Secondly, based on Pareto front layer, the concept of "individual importance degree" is proposed. The importance degree of an individual can reflect the importance of the individual in the same Pareto front layer, so as to further distinguish the advantages and disadvantages of different individuals in the same front layer. Then, a repulsion field method is proposed. The diversity of the population in the objective space is maintained by the repulsion field, so that the population can be evenly distributed on the real Pareto front. Finally, a new concurrent algorithm framework is designed. In the algorithm framework, the algorithm is divided into three states, and each state focuses on a specific task. The population can switch freely among these three states according to its own evolution. The MOEA/TS algorithm is compared with 7 advanced many-objective optimization algorithms. The experimental results show that the MOEA/TS algorithm is more competitive in many-objective optimization problems.

2.
Adv Healthc Mater ; : e2401895, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152918

ABSTRACT

Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.

3.
Hum Cell ; 37(5): 1325-1335, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004663

ABSTRACT

The prevalence of autoimmune diseases ranks as the third most common disease category globally, following cancer and heart disease. Numerous studies indicate that long non-coding RNA (lncRNA) plays a pivotal role in regulating human growth, development, and the pathogenesis of various diseases. It is more than 200 nucleotides in length and is mostly involve in the regulation of gene expression. Furthermore, lncRNAs are crucial in the development and activation of immune cells, with an expanding body of research exploring their association with autoimmune disorders in humans. LncRNA Ifng antisense RNA 1 (IFNG-AS1), a key regulatory factor in the immune system, also named NeST or TMEVPG1, is proximally located to IFNG and participates in the regulation of it. The dysregulation of IFNG-AS1 is implicated in the pathogenesis of several autoimmune diseases. This study examines the role and mechanism of IFNG-AS1 in various autoimmune diseases and considers its potential as a therapeutic target.


Subject(s)
Autoimmune Diseases , Interferon-gamma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , Autoimmune Diseases/genetics , Interferon-gamma/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics , Molecular Targeted Therapy
4.
Cell Biochem Biophys ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014185

ABSTRACT

RNAs transcribing more than 200 nucleotides without encoding proteins are termed long non-coding RNAs (LncRNAs). LncRNAs can be used as decoy molecules, signal molecules, scaffolds, and guide molecules. Long non-coding RNAs can interact with DNA, chromatin-modifying complexes, and transcriptional regulatory proteins, regulating gene expression in the cell nucleus. It is distributed in cytoplasm; they also participate in mRNA degradation and translational regulation via miRNAs, other transcription products, and proteins. They play a significant role in the development of various diseases, including tumors. Cancer seriously threatens human life and health. Regretfully, a great deal of newly diagnosed cancer patients found to have metastasized. RNF144A-AS1, also referred to as GRASLND, was initially recognized for its regulation of chondrogenic differentiation in MSCs. Focusing on RNF144A-AS1, this review summarizes and discusses the latest progress of RNF144A-AS1 in bladder cancer, glioblastoma, papillary renal cell carcinoma, gastric cancer, osteosarcoma, head and neck squamous cell carcinoma, and ovarian cancer. RNF144A-AS1 has good potential in tumor treatment and diagnosis.

5.
Ecol Evol ; 14(6): e11582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932977

ABSTRACT

Climate change significantly impacted on the survival, development, distribution, and abundance of living organisms. The Chinese serow Capricornis milneedwardsii, known as the "four unlike," is a Class II nationally protected species in China. In this study, we predicted the geographical suitability of C. milneedwardsii under current and future climatic conditions using MaxEnt. The model simulations resulted in area under the receiver operating characteristic curve (AUC) values above 0.9 for both current and future climate scenarios, indicating the excellent performance, high accuracy, and credibility of the MaxEnt model. The results also showed that annual precipitation (Bio12), slope, elevation, and mean temperature of wettest quarter (Bio8) were the key environmental variables affecting the distribution of C. milneedwardsii, with contributions of 31.2%, 26.4%, 11%, and 10.3%, respectively. The moderately and highly suitable habitats were mainly located in the moist area of China, with a total area of 34.56 × 104 and 16.61 × 104 km2, respectively. Under future climate change scenarios, the areas of suitability of C. milneedwardsii showed an increasing trend. The geometric center of the total suitable habitats of C. milneedwardsii would show the trend of northwest expansion and southeast contraction. These findings could provide a theoretical reference for the protection of C. milneedwardsii in the future.

6.
Carbohydr Polym ; 340: 122244, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858017

ABSTRACT

This study introduces a novel multi-functional double-layer intelligent packaging. It focuses on developing a dual-function system capable of real-time monitoring and freshness preservation. Specifically, cellulose nanocrystalline (CNC) was obtained through acid hydrolysis, and then CNC/soybean protein isolate (CNC/SPI) complex colloid particles were prepared via antisolvent method. These particles served as stabilizers to prepare oil-in-water (O/W) cinnamon essential oil Pickering emulsion (CSCEO). The CSCEO was then integrated into the emulsified hydrophobic layer of a konjac glucomannan (Kgm) matrix through intermolecular hydrogen bonding. Finally, alginate (Alg) matrix containing alizarin (Al) as an indicator was added to construct the bilayer structure using a layer-by-layer casting strategy. The inner layer Alg/Al was the pH/NH3-responsive indicator layer, while the outer layer Kgm/CSCEO acted as the high-barrier bacteriostatic layer. The obtained dual-function, double-layer film (Alg/Al-Kgm/CSCEO), which possesses a sensitive, reversible and rapid response towards pH/NH3, shows exceptional antibacterial and antioxidant properties, as well as excellent mechanical property, light-blocking capability and hydrophobicity. For monitoring and maintaining the actual freshness of shrimp, such a bilayer packaging displays smallest change of ∆E and TVB-N (18.65 mg/100 g) even after 72 h, which further highlighting its potential in enhancing food safety and extending shelf life.


Subject(s)
Alginates , Anti-Bacterial Agents , Food Packaging , Mannans , Seafood , Alginates/chemistry , Food Packaging/methods , Mannans/chemistry , Anti-Bacterial Agents/chemistry , Animals , Antioxidants/chemistry , Food Preservation/methods , Hydrophobic and Hydrophilic Interactions , Penaeidae/chemistry , Soybean Proteins/chemistry , Hydrogen-Ion Concentration , Escherichia coli/drug effects
7.
J Pharm Biomed Anal ; 246: 116252, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788622

ABSTRACT

Balanophora harlandii Hook (B. harlandii), a folk medicine, has been traditionally employed to treat traumatic bleeding, gastroenteritis, icteric hepatitis, hemorrhoids, and other conditions. In this work, polysaccharides with anti-inflammatory effects were extracted from B. harlandii and purified. The extraction conditions were optimized, and the properties of one purified neutral fraction, denoted as BHPs-W-S3, were analyzed. BHPs-W-S3 has a molecular weight of 14.1 kDa, and its three main monosaccharides are glucose, galactose, and xylose, with a molar ratio of 6.4:1.7:1.1. Its main chain consists of →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, →6)-ß-D-Galp-(1→, →3,6)-ß-D-Galp-(1→, and it has branch chains at the O-4 and/or O-3 positions. In addition, in vitro experiments showed that the polysaccharides from B. harlandi can decrease the phosphorylation level of p65 and IκBα in LPS-induced RAW264.7 cells to reduce the expression of the pro-inflammatory genes such as TNF-α, IL-6, and IL-1ß.


Subject(s)
Anti-Inflammatory Agents , Polysaccharides , Mice , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , RAW 264.7 Cells , Molecular Weight , Balanophoraceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/drug therapy
8.
Food Chem ; 453: 139700, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38795434

ABSTRACT

To enhance the colorimetric performance of anthocyanin (Ant), a konjac glucomannan (KGM)-based multifunctional pH-responsive indicator film was fabricated by introducing enzymatically prepared bacterial nanocellulose (EBNC) stabilized camellia oil/camellia essential oil Pickering emulsion (BCCE). Specifically, optimized enzymatic hydrolysis time (36 h) was determined based on the particle size and microstructure. Then BCCE (containing 0.4% EBNC) was incorporated into Ant-containing KGM, and the novel active indicator film (KGM-Ant-BCCE) was constructed. Films with varying BCCE concentrations (3%-11%) exhibited enhanced UV shielding, thermal stability, mechanical strength, water vapor and oxygen permeability, hydrophobicity, and antioxidant performance. The pronounced color change of KGM-Ant-BCCE indicated its potential for visually detecting shrimp freshness. Moreover, the biodegradability (25 days) confirmed the environmentally benign property of the film. In summary, incorporating green-produced EBNC nanoparticle-stabilized BCCE offers an innovative pathway to improve the color indication capability of polysaccharide-based smart packaging.


Subject(s)
Anthocyanins , Cellulose , Colorimetry , Emulsions , Food Packaging , Nanoparticles , Anthocyanins/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Emulsions/chemistry , Food Packaging/instrumentation , Camellia/chemistry , Green Chemistry Technology , Bacteria/chemistry , Oils, Volatile/chemistry , Animals
9.
J Acoust Soc Am ; 155(5): 2934-2947, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717201

ABSTRACT

Spatial separation and fundamental frequency (F0) separation are effective cues for improving the intelligibility of target speech in multi-talker scenarios. Previous studies predominantly focused on spatial configurations within the frontal hemifield, overlooking the ipsilateral side and the entire median plane, where localization confusion often occurs. This study investigated the impact of spatial and F0 separation on intelligibility under the above-mentioned underexplored spatial configurations. The speech reception thresholds were measured through three experiments for scenarios involving two to four talkers, either in the ipsilateral horizontal plane or in the entire median plane, utilizing monotonized speech with varying F0s as stimuli. The results revealed that spatial separation in symmetrical positions (front-back symmetry in the ipsilateral horizontal plane or front-back, up-down symmetry in the median plane) contributes positively to intelligibility. Both target direction and relative target-masker separation influence the masking release attributed to spatial separation. As the number of talkers exceeds two, the masking release from spatial separation diminishes. Nevertheless, F0 separation remains as a remarkably effective cue and could even facilitate spatial separation in improving intelligibility. Further analysis indicated that current intelligibility models encounter difficulties in accurately predicting intelligibility in scenarios explored in this study.


Subject(s)
Cues , Perceptual Masking , Sound Localization , Speech Intelligibility , Speech Perception , Humans , Female , Male , Young Adult , Adult , Speech Perception/physiology , Acoustic Stimulation , Auditory Threshold , Speech Acoustics , Speech Reception Threshold Test , Noise
10.
Food Chem ; 450: 138833, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653053

ABSTRACT

The instability and discoloration of (-)-epigallocatechin-3-gallate (EGCG) constrain its application in functional dairy products. Concurrently, challenges persist in the separation and utilization of whey in the dairy industry. By harnessing the interactions between polyphenols and whey proteins or their hydrolysates, this study proposed a method that involved limited enzymatic hydrolysis followed by the addition of EGCG and pH adjustment around the isoelectric point to obtain whey protein hydrolysates (WPH)-EGCG. Over 92 % of protein-EGCG complexes recovered from whey while ensuring the preservation of α-lactalbumin. The combination between EGCG and WPH depended on hydrogen bonding and hydrophobic interactions, significantly enhanced the thermal stability and storage stability of EGCG. Besides, the intestinal phase retention rate of EGCG in WPH-EGCG complex was significantly increased by 23.67 % compared to free EGCG. This work represents an exploratory endeavor in the improvement of EGCG stability and expanding the utilization approaches of whey.


Subject(s)
Catechin , Polyphenols , Whey Proteins , Catechin/chemistry , Catechin/analogs & derivatives , Whey Proteins/chemistry , Polyphenols/chemistry , Hydrolysis , Protein Hydrolysates/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Isoelectric Point
11.
Curr Med Chem ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38549534

ABSTRACT

BACKGROUND: Long non-coding RNA (LncRNA) is a type of non-coding RNA that plays an important role in the body and accounts for the majority of RNA, and this non-coding RNA can regulate disease onset and progression with its wide range of functions. LncRNA Xist, also known as the long non-coding RNA X inactive specific transcript, is a member of them. It can regulate the development of organismal diseases by acting downstream on specific target genes. In addition to this, it can also influence disease onset and progression by acting on apoptosis, migration, invasion, and other processes. It has been shown that XIST plays an important role in the development of inflammation. OBJECTIVE: To explore the role played by XIST in inflammation-related diseases and to explore its mechanism of action. METHODS: This paper summarizes and analyzes the role played by XIST in inflammation- related diseases by conducting a search in PubMed. CONCLUSION: In this paper, we summarize the mechanism of action of XIST in different types of inflammation-related diseases and propose new protocols for the future clinical treatment of these diseases.

12.
Article in English | MEDLINE | ID: mdl-38412501

ABSTRACT

Recent scientific studies have highlighted the importance of long-chain noncoding RNAs (lncRNAs) in a variety of metabolic diseases, but the specific functions and mechanisms of lncRNAs in aberrant lipid synthesis associated with aging are unknown. In this work, we inspected the effects of lncRNAs on the lipid metabolism in aging mice, as substantial evidence suggests that aging disturbs lipid metabolism. The results revealed that the expression of lncRNA Gm15232 was significantly elevated in the epididymal white adipose tissue of aging mice compared to adult mice. This upregulation of Gm15232 functioned as a competitive endogenous RNA by inhibiting the expression of miR-192-3p, and the ensuing downregulation of miR-192-3p increased the expression of the glucocorticoid receptor gene, which ultimately stimulated fat synthesis. The upregulation of Gm15232 thus increased lipogenesis through this mechanism. This study reveals a potential target for the treatment of age-related abnormalities of lipid metabolism.


Subject(s)
Lipogenesis , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Down-Regulation , Lipogenesis/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Up-Regulation , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Aging/genetics , Aging/metabolism
13.
Medicine (Baltimore) ; 103(6): e37033, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335397

ABSTRACT

INTRODUCTION: Primary tracheal acinic cell carcinoma (ACC) is an exceptionally rare malignancy, posing challenges in understanding its clinical behavior and optimal management. Surgical resection has traditionally been the primary treatment modality, but we present a compelling case of tracheal ACC managed with endotracheal intervention, challenging conventional approaches. PATIENT CONCERNS: A 53-year-old woman presented with shortness of breath, cough, and hemoptysis. Enhanced computed tomography revealed an obstructive tracheal lesion, leading to her referral for further assessment. DIAGNOSIS: Microscopic evaluation, immunohistochemistry, and clinical assessments confirmed primary tracheal ACC, an exceedingly rare condition with limited clinical insights. INTERVENTIONS: We utilized rigid bronchoscopy to perform endotracheal intervention, successfully resecting the tumor and restoring tracheal patency. Postoperatively, the patient received no radiotherapy or chemotherapy. OUTCOMES: The patient achieved complete recovery, with 24-month follow-up examinations indicating no recurrence or metastatic disease. Only minimal scar tissue remained at the resection site. CONCLUSION: This case demonstrates the potential of endotracheal intervention as a curative approach for primary tracheal ACC, minimizing invasiveness and preserving tracheal function. Collaborative research efforts and extensive case reporting are crucial for advancing our understanding of this rare malignancy and optimizing treatment strategies for improved patient outcomes.


Subject(s)
Carcinoma, Acinar Cell , Tracheal Neoplasms , Humans , Female , Middle Aged , Tracheal Neoplasms/surgery , Tracheal Neoplasms/pathology , Carcinoma, Acinar Cell/surgery , Carcinoma, Acinar Cell/pathology , Trachea/surgery , Trachea/pathology , Bronchoscopy/methods , Tomography, X-Ray Computed
14.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958991

ABSTRACT

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Sirtuin 3 , Animals , Mice , Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Mammals/metabolism , Myocytes, Cardiac/metabolism , NAD/metabolism , Oxidative Stress , Pyroptosis , Sirtuin 3/metabolism , Stroke Volume , Ventricular Function, Left
15.
Curr Med Chem ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855346

ABSTRACT

BACKGROUND: Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE: To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS: In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS: LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION: LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.

16.
Environ Sci Pollut Res Int ; 30(53): 113151-113174, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853221

ABSTRACT

Direct application of high-sulfur fuels and ores can cause environmental pollution (such as air pollution and acid rain) and, in serious cases, endanger human health and contribute to property damage. In the background of preserving the environment, microbial desulfurization technologies for high-sulfur fuels and ores are rapidly developed. This paper aims to reveal the progress of microbial desulfurization research on fuels and ores using bibliometric analysis. 910 publications on microbial desulfurization of fuels and ores from web core databases were collected in this work, spanning 39 years. Through 910 retrieved documents, collaborative networks of authors, institutions and countries were mapped by this work, the sources of highly cited articles and cited documents were statistically analyzed, and keyword development from different perspectives was discussed. The results of the study provide a reference for microbial desulfurization research and benefit environmental protection and energy green applications.


Subject(s)
Air Pollution , Sulfur , Humans , Industry
17.
Curr Med Chem ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37711129

ABSTRACT

Long non-coding RNA (LncRNA) refers to a large class of RNAs with over 200 nucleotides that do not have the function of encoding proteins. In recent years, more and more literature has revealed that lncRNA is involved in manipulating genes related to human health and disease, playing outstanding biological functions, which has attracted widespread attention from researchers. The newly discovered long-stranded non-coding RNA myocardial infarction-related transcript (LncRNA MIAT) is abnormally expressed in a variety of diseases, especially in diabetic complications, and has been proven to have a wide range of effects. This review article aimed to summarize the importance of LncRNA MIAT in diabetic complications, such as diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy, and highlight the latest findings on the pathway and mechanism of its participation in regulating diabetic complications, which may aid in finding new intervention targets for the treatment of diabetic complications. LncRNA MIAT competitively binds microRNAs to regulate gene expression as competitive endogenous RNAs. Thus, this review article has reviewed the biological function and pathogenesis of LncRNA MIAT in diabetic complications and described its role in diabetic complications. This paper will help in finding new therapeutic targets and intervention strategies for diabetes complications.

18.
J Colloid Interface Sci ; 649: 416-425, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37354798

ABSTRACT

The unique characteristics and diverse applications of 2D transition metal phosphides have aroused significant interest. In this paper, we successfully prepared 2D NiCoP modified ZnCdS composite. The NiCoP nanosheets were successfully obtained by phosphating layered double hydroxide (LDH) precursor. The results show that the ZnCdS-8%NiCoP has the highest photocatalytic performance among all the composite photocatalysts with the H2 evolution rate of 1370.1 µmol h-1, which is 17.9 folds higher than obtained with pure ZnCdS. Detailed analysis reveal that NiCoP nanosheets functions as an excellent electron acceptor, speeding up the directed migration of electrons. Furthermore, the rational mechanism of photocatalytic has been presented based on density function theory (DFT) calculations, which is well congruent with experimental results. Our research offers a simple, environmentally benign, and scalable technique for making highly effective photocatalysts, as well as a novel perspective on transition metal phosphides rational design.

19.
Diagnostics (Basel) ; 13(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37174938

ABSTRACT

Stethoscopes were originally designed for the auscultation of a patient's chest for the purpose of listening to lung and heart sounds. These aid medical professionals in their evaluation of the cardiovascular and respiratory systems, as well as in other applications, such as listening to bowel sounds in the gastrointestinal system or assessing for vascular bruits. Listening to internal sounds during chest auscultation aids healthcare professionals in their diagnosis of a patient's illness. We performed an extensive literature review on the currently available stethoscopes specifically for use in chest auscultation. By understanding the specificities of the different stethoscopes available, healthcare professionals can capitalize on their beneficial features, to serve both clinical and educational purposes. Additionally, the ongoing COVID-19 pandemic has also highlighted the unique application of digital stethoscopes for telemedicine. Thus, the advantages and limitations of digital stethoscopes are reviewed. Lastly, to determine the best available stethoscopes in the healthcare industry, this literature review explored various benchmarking methods that can be used to identify areas of improvement for existing stethoscopes, as well as to serve as a standard for the general comparison of stethoscope quality. The potential use of digital stethoscopes for telemedicine amidst ongoing technological advancements in wearable sensors and modern communication facilities such as 5G are also discussed. Based on the ongoing trend in advancements in wearable technology, telemedicine, and smart hospitals, understanding the benefits and limitations of the digital stethoscope is an essential consideration for potential equipment deployment, especially during the height of the current COVID-19 pandemic and, more importantly, for future healthcare crises when human and resource mobility is restricted.

20.
Can J Physiol Pharmacol ; 101(7): 369-381, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37192549

ABSTRACT

Obesity is a metabolic syndrome characterized by abnormal lipid deposition and energy imbalance. CD38 is a single-chain transmembrane glycoprotein widely expressed in a variety of cell types. The roles of skeletal muscle and brown fat in CD38 deficiency under HFD-induced obesity remain unknown. In this study, we established obesity model with HFD and examined the changes in metabolites with metabonomics. Our results showed that CD38 expression was increased in muscle and brown fat after HFD treatment. Moreover, the results of metabonomics showed that CD38 deficiency significantly altered the metabolites in energy metabolism, cofactor generation, and redox homeostasis. Furthermore, CD38 deficiency reduced the expressions of NADPH oxidase 2 and FASN in mRNA level. We found that the expressions of Sirt1, Sirt3, and PGC1α were upregulated in CD38-deficient muscle tissue. In brown fat, the Sirt1-3, cell death inducing DFFA-like effector A, ELOVL3, and Dio2 expressions were increased in CD38-deficient mice. Our results showed the uncoupling protein 1 expression was upregulated. And NAD+ supplementation increased the expression of Sirt1 and PGC1α after palmitic acid treatment. Taken together, our results demonstrated that the protection of CD38 deficiency on HFD-induced obesity was related to the inhibition of oxidative stress and increasing energy expenditure via activating NAD+/Sirtuins signaling pathways in muscle and brown fat.


Subject(s)
Adipose Tissue, Brown , NAD , Animals , Mice , Adipose Tissue, Brown/metabolism , Diet, High-Fat , Energy Metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , NAD/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL