Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Nat Commun ; 15(1): 3991, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734724

ABSTRACT

Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.


Subject(s)
Citrus , Flavonoids , Methyltransferases , Citrus/genetics , Citrus/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Gene Regulatory Networks , Multiomics
2.
Front Endocrinol (Lausanne) ; 15: 1387035, 2024.
Article in English | MEDLINE | ID: mdl-38808112

ABSTRACT

Introduction: The effects of vitamin B12 metabolism on musculoskeletal health and the exact mechanism have not been fully determined. Our study aimed to assess the association of vitamin B12 and its biomarkers with musculoskeletal health in middle-aged and older adults. Methods: The data from the National Health and Nutrition Examination Survey 2001-2002 were used to investigate the effects of serum vitamin B12 and its biomarkers (homocysteine and methylmalonic acid) on skeletal muscle health. Bone mineral density (BMD), lean mass, gait speed and knee extensor strength were used as indicators for musculoskeletal health. Results: Serum vitamin B12 level was positively correlated with the total and appendicular lean mass (ß = 584.83, P = 0.044; ß = 291.65, P = 0.043) in older adults over 65 years of age. In the full population, plasma homocysteine was associated with total lean mass, appendicular lean mass, gait speed, and knee extensor strength (all P < 0.05). Among older adults over 65 years of age, homocysteine level was significantly negatively correlated with gait speed and knee extensor strength (ß = -12.75, P = 0.019; ß = -0.06, P <0.001). Plasma methylmalonic acid was negatively associated with total BMD and femur BMD in the full population (ß = -0.01, P = 0.018; ß = -0.01, P = 0.004). In older adults, methylmalonic acid significantly affected total BMD, femur BMD and knee extensor strength (ß = -0.01, P = 0.048; ß = -0.01, P = 0.025; ß = -7.53, P = 0.015). Conclusions: Vitamin B12 and its biomarkers are closely related to BMD, body composition, muscle strength and physical function in middle-aged and older adults. Vitamin B12 may be an important indicator of musculoskeletal health in the elderly.


Subject(s)
Biomarkers , Bone Density , Homocysteine , Methylmalonic Acid , Muscle Strength , Vitamin B 12 , Humans , Vitamin B 12/blood , Aged , Female , Male , Biomarkers/blood , Middle Aged , Bone Density/physiology , Homocysteine/blood , Methylmalonic Acid/blood , Muscle Strength/physiology , Muscle, Skeletal/metabolism , Nutrition Surveys , Body Composition , Cross-Sectional Studies , Aged, 80 and over
3.
J Biol Chem ; : 107377, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762174

ABSTRACT

Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HTATSF1 Ser748 (pS748) to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency (HRD) scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to PARP inhibitors (PARPis) or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis, and serves as an indicator of tumor HR status and modulates chemotherapy response.

4.
J Int Med Res ; 52(4): 3000605241245000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635893

ABSTRACT

Ovarian cancer is a common tumor among women. It is often asymptomatic in the early stages, with most cases already at stage III to IVE at the time of diagnosis. Direct spread and lymphatic metastasis are the primary modes of metastasis, whereas hematogenous spread is rare. An initial diagnosis of ovarian cancer that has metastasized to the stomach is also uncommon. Therefore, clear treatment methods and prognostic data for such metastasis are lacking. In our hospital, we encountered a patient with an initial imaging diagnosis of a gastric tumor and a history of an ovarian tumor with endoscopic abdominal metastasis. Based on the characteristics of the case, the two tumors were considered to be the same. After chemotherapy, a partial response was observed in the stomach and pelvic lesions, suggesting the effectiveness of the treatment. Through three treatments of recurrence, gastroscopy confirmed the stomach to be a metastatic site. Therefore, determining the primary source of advanced tumors is crucial in guiding treatment decisions. Clinicians must approach this comprehensively, relying on thorough evaluation and personal experience.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Stomach Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/pathology , Prognosis , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach/diagnostic imaging , Stomach/pathology
5.
Article in English | MEDLINE | ID: mdl-38541375

ABSTRACT

Home health care companies provide health care services to patients in their homes. Due to increasing demand, the provision of home health care services requires effective management of operational costs while satisfying both patients and caregivers. In practice, uncertain service times might lead to considerable delays that adversely affect service quality. To this end, this paper proposes a new bi-objective optimization problem to model the routing and scheduling problems under uncertainty in home health care, considering the qualification and workload of caregivers. A mixed-integer linear programming formulation is developed. Motivated by the challenge of computational time, we propose the Adaptive Large Neighborhood Search embedded in an Enhanced Multi-Directional Local Search framework (ALNS-EMDLS). A stochastic ALNS-EMDLS is introduced to handle uncertain service times for patients. Three kinds of metrics for evaluating the Pareto fronts highlight the efficiency of our proposed method. The sensitivity analysis validates the robustness of the proposed model and method. Finally, we apply the method to a real-life case and provide managerial recommendations.


Subject(s)
Home Care Services , Medicine , Humans , Uncertainty , Time Factors , Efficiency, Organizational
6.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38423014

ABSTRACT

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Subject(s)
Chromatin , Nuclear Proteins , Animals , Chromatin/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA/genetics , DNA End-Joining Repair , Histones/genetics , Histones/metabolism , Chromosome Pairing , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Mammals/metabolism
7.
Int J Biol Macromol ; 262(Pt 2): 129936, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309391

ABSTRACT

Mulberry (Morus alba L.), a kind of common fruits widely cultivated worldwide, has been proven various biological activities. However, its potential role in the progression of knee osteoarthritis (KOA) remains unclear. This study aims to investigate the potential protective effects of crude polysaccharide extracted from mulberry fruit, referred to as a complex blend of polysaccharides and other unidentified extracted impurities, on KOA progression. The KOA rats were established by injection of 1 mg sodium monoiodoacetate into knee, and administrated with crude mulberry polysaccharide (Mup) by gastric gavage for 4 weeks. Furthermore, intestinal bacteria clearance assay (IBCA) and fecal microbiota transplantation were conducted for the evaluation of the effect of gut microbiota (GM) on KOA. Our findings demonstrated that Mup, particularly at a dosage of 200 mg/kg, effectively improved abnormal gait patterns, reduced the level of inflammation, mitigated subchondral bone loss, restored compromised joint surfaces, alleviated cartilage destruction, and positively modulated the dysregulated profile of GM in KOA rats. Moreover, IBCA compromised the protective effects of Mup, while transplantation of fecal bacteria from Mup-treated rats facilitated KOA recovery. Collectively, our study suggested that Mup had the potential to ameliorate the progression of KOA, potentially through its modulation of GM profile.


Subject(s)
Gastrointestinal Microbiome , Morus , Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/drug therapy , Fruit , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
8.
Bioact Mater ; 35: 346-361, 2024 May.
Article in English | MEDLINE | ID: mdl-38379699

ABSTRACT

The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.

9.
PLoS Comput Biol ; 20(2): e1011865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346086

ABSTRACT

Generalist microbes have adapted to a multitude of environmental stresses through their integrated stress response system. Individual stress responses have been quantified by E. coli metabolism and expression (ME) models under thermal, oxidative and acid stress, respectively. However, the systematic quantification of cross-stress & cross-talk among these stress responses remains lacking. Here, we present StressME: the unified stress response model of E. coli combining thermal (FoldME), oxidative (OxidizeME) and acid (AcidifyME) stress responses. StressME is the most up to date ME model for E. coli and it reproduces all published single-stress ME models. Additionally, it includes refined rate constants to improve prediction accuracy for wild-type and stress-evolved strains. StressME revealed certain optimal proteome allocation strategies associated with cross-stress and cross-talk responses. These stress-optimal proteomes were shaped by trade-offs between protective vs. metabolic enzymes; cytoplasmic vs. periplasmic chaperones; and expression of stress-specific proteins. As StressME is tuned to compute metabolic and gene expression responses under mild acid, oxidative, and thermal stresses, it is useful for engineering and health applications. The modular design of our open-source package also facilitates model expansion (e.g., to new stress mechanisms) by the computational biology community.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Stress, Physiological/genetics , Oxidation-Reduction , Heat-Shock Proteins/metabolism , Acids/metabolism , Gene Expression
10.
BMC Microbiol ; 24(1): 18, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200417

ABSTRACT

BACKGROUND: Cinnamomum camphora (L.) Presl (C. camphora) is an evergreen broad-leaved tree cultivated in subtropical China. The use of C. camphora as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear. MATERIALS AND METHODS: In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions. RESULTS: The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality. CONCLUSION: Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.


Subject(s)
Cinnamomum camphora , Microbiota , China , Soil , Trees
11.
Asia Pac J Oncol Nurs ; 10(12): 100313, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076294

ABSTRACT

Objective: This study aims to develop and validate a suitable scale for assessing the level of fertility information support in reproductive-aged breast cancer patients. Methods: We utilized an exploratory mixed methods approach, dividing the study into two phases: scale development and validation. In Phase 1, initial items were generated through literature review and qualitative interviews. In Phase 2, a cross-sectional survey was conducted involving 468 reproductive-aged breast cancer patients to evaluate the scale's validity and reliability. Scale items underwent item analysis, and their validity and reliability were assessed using Cronbach's α coefficient, retest reliability, content validity, structural validity, and convergent validity. Results: The final scale comprised 17 items, and exploratory factor analysis revealed three common dimensions with internal consistency coefficients of 0.894, 0.816, and 0.869. The overall internal consistency of the scale was 0.908, with a retest reliability Pearson correlation coefficient of 0.937, indicating strong stability and reliability. The construct validity of the scale was excellent (χ2 = 198.606, df = 113, χ2/df = 1.758, root mean square of approximation error = 0.055, goodness-of-fit index = 0.917, comparative fit index = 0.979, null fitting index = 0.953, and incremental fitting index = 0.979). Conclusions: Our fertility information support scale for reproductive-aged breast cancer patients demonstrates favorable psychometric properties. It serves as a valuable tool for evaluating fertility information support levels among these patients, assisting medical professionals in addressing fertility concerns and implementing personalized support programs. However, further research is needed to investigate the applicability of this scale in patients from diverse social and cultural backgrounds.

12.
Cyberpsychol Behav Soc Netw ; 26(12): 924-929, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37883183

ABSTRACT

Amblyopia affects development of children's monocular vision and binocular function and becomes a largely intractable problem with increasing aging. This study is to investigate the binocular function and evaluate efficacy of digital therapy in children 8-13 years of age with anisometropic amblyopia. The patients in the digital therapy group performed the training with the digital amblyopia therapeutic software. The visual acuity and binocular function (perceptual eye position [PEP], suppression, and stereopsis) were examined at the first visit and 3-month post-treatment. Twenty-three cases in the control group and 25 cases in the digital therapy group were enrolled. The results revealed that 3-month digital therapy can effectively improve corrected distance visual acuity (CDVA) and improve the binocular function, including PEP, suppression, and second-order stereopsis in children with anisometropic amblyopia, 8-13 years of age. Digital therapy for amblyopia can effectively improve monocular CDVA of amblyopic eyes and binocular function in older children with anisometropic amblyopia.


Subject(s)
Amblyopia , Child , Humans , Amblyopia/therapy , Vision, Binocular , Visual Acuity , Software
13.
Anal Chem ; 95(28): 10565-10571, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37392190

ABSTRACT

V2O5 is a promising pseudocapacitive material for electrochemical energy storage with balanced power and energy density. Understanding the charge-storage mechanism is of significance to further improve the rate performance. Here, we report an electrochemical study of individual V2O5 particles using scanning electrochemical cell microscopy with colocalized electron microscopy. A carbon sputtering procedure is proposed for the pristine V2O5 particles to improve their structure stability and electronic conductivity. The achieved high-quality electrochemical cyclic voltammetry results, structural integrity, and high oxidation to reduction charge ratio (as high as 97.74%) assured further quantitative analysis of the pseudocapacitive behavior of single particles and correlation with local particle structures. A broad range of capacitive contribution is revealed, with an average ratio of 76% at 1.0 V/s. This study provides new opportunities for quantitative analysis of the electrochemical charge-storage process at single particles, especially for electrode materials with electrolyte-induced instability.

14.
Anal Chem ; 95(31): 11657-11663, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37490501

ABSTRACT

Transition-metal (oxy)hydroxides are among the most active and studied catalysts for the oxygen evolution reaction in alkaline electrolytes. However, the geometric distribution of active sites is still elusive. Here, using the well-defined crystalline iron-substituted cobalt hydroxide as a model catalyst, we reported the scanning electrochemical cell microscopy (SECCM) study of single-crystalline nanoplates, where the oxygen evolution reaction at individual nanoplates was isolated and evaluated independently. With integrated prior- and post-SECCM scanning electron microscopy of the catalyst morphology, correlated structure-activity information of individual electrocatalysts was obtained. Our result reveals that while the active sites are largely located at the edges of the pristine Co(OH)2 nanoplates, the Fe lattice incorporation significantly promotes the basal plane activities. Our approach of correlative imaging provides new insights into the effect of iron incorporation on active site distribution across nano-electrocatalysts.

15.
Huan Jing Ke Xue ; 44(6): 3386-3395, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309956

ABSTRACT

Vegetation restoration can effectively improve the ecological environment of mining areas, enhance the ecological service function, and promote the carbon sequestration and sink increase in the ecosystem. The soil carbon cycle plays an important role in the biogeochemical cycle. The abundance of functional genes can predict the material cycling potential and metabolic characteristics of soil microorganisms. Previous studies on functional microorganisms have mainly focused on large ecosystems such as farmland, forest, and wetland, but relatively little attention has been paid to complex ecosystems with great anthropogenic interference and special functions, such as mines. Clarifying the succession and driving mechanism of functional microorganisms in reclaimed soil under the guidance of vegetation restoration is helpful to fully explore how functional microorganisms change with the change in abiotic and biotic conditions. Therefore, 25 topsoil samples were collected from grassland (GL), brushland (BL), coniferous forests (CF), broadleaf forests (BF), and mixed coniferous and broadleaf forests (MF) in the reclamation area of the Heidaigou open pit waste dump on the Loess Plateau. The absolute abundance of soil carbon cycle functional genes was determined using real-time fluorescence quantitative PCR to explore the effect of vegetation restoration on the abundance of carbon cycle-related functional genes in soil and its internal mechanism. The results showed that:① the effects of different vegetation restoration types on the chemical properties of reclaimed soil and the abundance of functional genes related to the carbon cycle were significantly different (P<0.05). GL and BL showed significantly better accumulation of soil organic carbon, total nitrogen, and nitrate nitrogen (P<0.05) than that in CF. ② The gene abundance of rbcL, acsA, and mct was the highest among all carbon fixation genes. The abundance of functional genes related to carbon cycle in BF soil was higher than that in other types, which was closely related to the high activity of ammonium nitrogen and BG enzymes and the low activity of readily oxidized organic carbon and urease in BF soil. The functional gene abundance of carbon degradation and methane metabolism was positively correlated with ammonium nitrogen and BG enzyme activity and negatively correlated with organic carbon, total nitrogen, readily oxidized organic carbon, nitrate nitrogen, and urease activity (P<0.05). ③ Different vegetation types could directly affect soil BG enzyme activity or affect soil nitrate nitrogen content, thus indirectly affecting BG enzyme activity, in turn manipulating the abundance of functional genes related to the carbon cycle. This study is helpful to understand the effects of different vegetation restoration types on the functional genes related to the carbon cycle in the soil of mining areas on the Loess Plateau and provides a scientific basis for ecological restoration and ecological carbon sequestration and sink enhancement in mining areas.


Subject(s)
Ecosystem , Soil , Carbon , Nitrates , Urease , Carbon Cycle , Forests , Nitrogen
16.
Micromachines (Basel) ; 14(5)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241674

ABSTRACT

It is of great significance for structural design and engineering evaluation to obtain the elastic-plastic parameters of materials. The inverse estimation of elastic-plastic parameters of materials based on nanoindentation technology has been applied in many pieces of research, but it has proved to be difficult to determine the elastic-plastic properties of materials by only using a single indentation curve. A new optimal inversion strategy based on a spherical indentation curve was proposed to obtain the elastoplastic parameters (the Young's modulus E, yield strength σy, and hardening exponent n) of materials in this study. A high-precision finite element model of indentation with a spherical indenter (radius R = 20 µm) was established, and the relationship between the three parameters and indentation response was analyzed using the design of experiment (DOE) method. The well-posed problem of inverse estimation under different maximum indentation depths (hmax1 = 0.06 R, hmax2 = 0.1 R, hmax3 = 0.2 R, hmax4 = 0.3 R) was explored based on numerical simulations. The results show that the unique solution with high accuracy can be obtained under different maximum press-in depths (the minimum error was within 0.2% and the maximum error was up to 1.5%). Next, the load-depth curves of Q355 were obtained by a cyclic loading nanoindentation experiment, and the elastic-plastic parameters of Q355 were determined by the proposed inverse-estimation strategy based on the average indentation load-depth curve. The results showed that the optimized load-depth curve was in good agreement with the experimental curve, and the optimized stress-strain curve was slightly different from the tensile test, and the obtained parameters were basically consistent with the existing research.

17.
NPJ Vaccines ; 8(1): 76, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231060

ABSTRACT

Pseudomonas aeruginosa (PA) is a leading cause of hospital-acquired and ventilator-associated pneumonia. The multidrug-resistance (MDR) rate of PA is increasing making the management of PA a global challenge. Messenger RNA (mRNA) vaccines represent the most promising alternative to conventional vaccines and are widely studied for viral infection and cancer immunotherapy while rarely studied for bacterial infections. In this study, two mRNA vaccines encoding PcrV- the key component of the type III secretion system in Pseudomonas and the fusion protein OprF-I comprising outer membrane proteins OprF and OprI were constructed. The mice were immunized with either one of these mRNA vaccines or with the combination of both. Additionally, mice were vaccinated with PcrV, OprF, or the combination of these two proteins. Immunization with either mRNA-PcrV or mRNA-OprF-I elicited a Th1/Th2 mixed or slighted Th1-biased immune response, conferred broad protection, and reduced bacterial burden and inflammation in burn and systemic infection models. mRNA-PcrV induced significantly stronger antigen-specific humoral and cellular immune responses and higher survival rate compared with the OprF-I after challenging with all the PA strains tested. The combined mRNA vaccine demonstrated the best survival rate. Moreover, the mRNA vaccines showed the superiority over protein vaccines. These results suggest that mRNA-PcrV as well as the mixture of mRNA-PcrV and mRNA-OprF-I are promising vaccine candidates for the prevention of PA infection.

18.
Angew Chem Int Ed Engl ; 62(30): e202304424, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37225678

ABSTRACT

Tuning the surface strain of heterogeneous catalysts is recognized as a powerful strategy for tailoring their catalytic activity. However, a clear understanding of the strain effect in electrocatalysis at single-particle resolution is still lacking. Here, we explore the electrochemical hydrogen evolution reaction (HER) of single Pd octahedra and icosahedra with the same surface bounded {111} crystal facet and similar sizes using scanning electrochemical cell microscopy (SECCM). It is revealed that tensilely strained Pd icosahedra display significantly superior HER electrocatalytic activity. The estimated turnover frequency at -0.87 V vs RHE on Pd icosahedra is about two times higher than that on Pd octahedra. Our single-particle electrochemistry study using SECCM at Pd nanocrystals unambiguously highlights the importance of tensile strain on electrocatalytic activity and may offer new strategy for understanding the fundamental relationship between surface strain and reactivity.

19.
Microbiol Resour Announc ; 12(4): e0054322, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36951589

ABSTRACT

Fusobacterium vincentii usually inhabits the oral cavity and plays an important role in periodontal diseases. Here, we report the draft genome sequence of F. vincentii strain CNGBCC1850030, isolated from healthy human feces.

20.
Front Microbiol ; 14: 1104077, 2023.
Article in English | MEDLINE | ID: mdl-36819046

ABSTRACT

Cinnamomum camphora (C. camphora) is a broad-leaved evergreen tree cultivated in subtropical China. Currently, the use of C. camphora clonal cuttings for coppice management has become popular. However, the effects of C. camphora coppice planting on soil abiotic and biotic variances remained unclear. In this study, we collected soil from three points in the seven-year C. camphora coppice planting land: under the tree canopy (P15), between trees (P50), and abandoned land (Control) to investigate the effects of C. camphora coppice planting on soil fertility, microbial community structure and enzyme activity. The results revealed that C. camphora coppice planting significantly increased soil fertility in the point under the tree canopy (P15) and point between trees (P50), and P15 had more significant effects than P50. Meanwhile, in P15 and P50, soil bacterial, fungal alpha-diversity were improved and microbial community structures were also changed. And the changes of soil organic carbon and total nitrogen promote the transformation of soil bacterial, fungal community structures, respectively. In addition, C. camphora coppice planting significantly (p < 0.05) increased soil urease (UE), polyphenol oxidase, and peroxidase activities, while significantly decreased soil ACP activity. This study demonstrated that the C. camphora coppice planting could improve soil fertility in subtropical China, which promoted the transformation of soil microbial community from oligotrophs (K-strategist) to copiotrophs (r-strategist). Thus, this work can provide a theoretical basis for soil nutrient variation and productive management of C. camphora coppice plantation in subtropical China.

SELECTION OF CITATIONS
SEARCH DETAIL
...