Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Nat Commun ; 15(1): 4162, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755139

ABSTRACT

The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.


Subject(s)
COVID-19 , Furin , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Glycosylation , Furin/metabolism , Furin/genetics , COVID-19/virology , COVID-19/metabolism , HEK293 Cells , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Animals , Chlorocebus aethiops , Polypeptide N-acetylgalactosaminyltransferase
2.
Virol Sin ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677713

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. In this study, we detected accessory protein-specific antibodies in COVID-19 patients' sera using various techniques, including Luciferase Immunoprecipitation System (LIPS), Immunofluorescence assay (IFA), and Western blot (WB). Proteins 3a, 3b, 7b, 8 and 9c specific antibodies can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. And antibodies against protein 3a and 7b only detected in ICU patients, which may serve as a marker for predicting the disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for the protein detection assays and their role in pathogenesis.

3.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654010

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Fibroblast Growth Factor 7 , Islets of Langerhans , Organoids , Animals , Humans , Male , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Human Embryonic Stem Cells/metabolism , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Islets of Langerhans/virology , Islets of Langerhans/pathology , Organoids/virology , Organoids/metabolism , Organoids/pathology , SARS-CoV-2/genetics
4.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Article in English | MEDLINE | ID: mdl-38638822

ABSTRACT

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Mast Cells/metabolism , Neuroinflammatory Diseases , Microglia/metabolism , Brain/metabolism , Inflammation/metabolism , Cytokines/metabolism
5.
Arch Virol ; 169(4): 82, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520595

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) cause intestinal diseases with similar manifestations in suckling piglets. In this study, we developed a multiplex real-time PCR for differential diagnosis of PEDV, PDCoV, and SADS-CoV. The assay demonstrated high specificity with a detection limit of 5 copies/µl for each virus. The assay specifically detected PEDV, PDCoV, and SADS-CoV and excluded all other swine pathogens circulating in pigs. Furthermore, the assay exhibited satisfactory performance in analyzing clinical samples. The data indicate that the newly developed multiplex real-time PCR method can be applied for differential diagnosis of porcine enteric coronaviruses.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Deltacoronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Diarrhea/diagnosis , Diarrhea/veterinary , Sensitivity and Specificity , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology
6.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454157

ABSTRACT

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Rabbits , Antibodies, Neutralizing , Antibodies, Viral , Macaca mulatta , Macrophages , Nanovaccines , Phagocytosis , Sialic Acid Binding Immunoglobulin-like Lectins
7.
Signal Transduct Target Ther ; 9(1): 74, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528022

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/metabolism , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Epithelial Cells/metabolism , Glucocorticoids
8.
Int J Biol Macromol ; 264(Pt 1): 130377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395279

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 µM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 µM, 1.95 µM and 1.18 µM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 µM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 µM and 5.24 ± 0.21 µM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Pandemics , Kinetics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Renal Dialysis , Catechols/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
9.
Adv Mater ; 36(14): e2311537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174591

ABSTRACT

Three kinds of coronaviruses are highly pathogenic to humans, and two of them mainly infect humans through Angiotensin-converting enzyme 2 (ACE2)receptors. Therefore, specifically blocking ACE2 binding at the interface with the receptor-binding domain is promising to achieve both preventive and therapeutic effects of coronaviruses. Alternatively, drug-targeted delivery based on ACE2 receptors can further improve the efficacy and safety of inhalation drugs. Here, these two approaches are innovatively combined by designing a nanoemulsion (NE) drug delivery system (termed NE-AYQ) for inhalation that targets binding to ACE2 receptors. This inhalation-delivered remdesivir nanoemulsion (termed RDSV-NE-AYQ) effectively inhibits the infection of target cells by both wild-type and mutant viruses. The RDSV-NE-AYQ strongly inhibits Severe acute respiratory syndrome coronavirus 2 at two dimensions: they not only block the binding of the virus to host cells at the cell surface but also restrict virus replication intracellularly. Furthermore, in the mouse model of acute lung injury, the inhaled drug delivery system loaded with anti-inflammatory drugs (TPCA-1-NE-AYQ) can significantly alleviate the lung tissue injury of mice. This smart combination provides a new choice for dealing with possible emergencies in the future and for the rapid development of inhaled drugs for the treatment of respiratory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Virus Replication
10.
Nat Commun ; 15(1): 842, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287016

ABSTRACT

The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.


Subject(s)
COVID-19 , Female , Animals , Humans , Mice , SARS-CoV-2/genetics , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Epitopes/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
12.
Cell Rep ; 43(1): 113653, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175758

ABSTRACT

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Broadly Neutralizing Antibodies , Cryoelectron Microscopy , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
13.
Cell Mol Immunol ; 21(2): 119-133, 2024 02.
Article in English | MEDLINE | ID: mdl-38238440

ABSTRACT

The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Cricetinae , Humans , Animals , Pandemics , COVID-19 Vaccines , Ferrets , Disease Models, Animal
14.
EBioMedicine ; 99: 104903, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064992

ABSTRACT

BACKGROUND: The impact of previous vaccination on protective immunity, duration, and immune imprinting in the context of BA.5-XBB.1.9.1 reinfection remains unknown. METHODS: Based on a 2-year longitudinal cohort from vaccination, BA.5 infection and XBB reinfection, several immune effectors, including neutralizing antibodies (Nabs), antibody-dependent cellular cytotoxicity (ADCC), virus-specific T cell immunity were measured to investigate the impact of previous vaccination on host immunity induced by BA.5 breakthrough infection and BA.5-XBB.1.9.1 reinfection. FINDINGS: In absence of BA.5 Nabs, plasma collected 3 months after receiving three doses of inactivated vaccine (I-I-I) showed high ADCC that protected hACE2-K18 mice from fatality and significantly reduced viral load in the lungs and brain upon BA.5 challenge, compared to plasma collected 12 months after I-I-I. Nabs against XBB.1.9.1 induced by BA.5 breakthrough infection were low at day 14 and decreased to a GMT of 10 at 4 months and 28% (9/32) had GMT ≤4, among whom 67% (6/9) were reinfected with XBB.1.9.1 within 1 month. However, 63% (20/32) were not reinfected with XBB.1.9.1 at 5 months post BA.5 infection. Interestingly, XBB.1.9.1 reinfection increased Nabs against XBB.1.9.1 by 24.5-fold at 14 days post-reinfection, which was much higher than that against BA.5 (7.3-fold) and WT (4.5-fold), indicating an immune imprinting shifting from WT to XBB antigenic side. INTERPRETATION: Overall, I-I-I can provide protection against BA.5 infection and elicit rapid immune response upon BA.5 infection. Furthermore, BA.5 breakthrough infection effectively protects against XBB.1.9.1 lasting more than 5 months, and XBB.1.9.1 reinfection results in immune imprinting shifting from WT antigen induced by previous vaccination to the new XBB.1.9.1 antigen. These findings strongly suggest that future vaccines should target variant strain antigens, replacing prototype strain antigens. FUNDING: This study was supported by R&D Program of Guangzhou National Laboratory (SRPG23-005), National Key Research and Development Program of China (2022YFC2604104, 2019YFC0810900), S&T Program of Guangzhou Laboratory (SRPG22-006), and National Natural Science Foundation of China (81971485, 82271801, 81970038), Emergency Key Program of Guangzhou Laboratory (EKPG21-30-3), Zhongnanshan Medical Foundation of Guangdong Province (ZNSA-2020013), and State Key Laboratory of Respiratory Disease (J19112006202304).


Subject(s)
Breakthrough Infections , Reinfection , Humans , Animals , Mice , Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , Brain , Antibodies, Viral
16.
Emerg Microbes Infect ; 13(1): 2290841, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38044868

ABSTRACT

Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naïve individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naïve B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naïve B cell repertoires, providing a valuable reference for future vaccine design and evaluation.


Subject(s)
Ascomycota , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Epitopes , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
17.
Virology ; 589: 109925, 2024 01.
Article in English | MEDLINE | ID: mdl-37984151

ABSTRACT

SARS-CoV-2 and its variants continue to threaten public health. Nanobodies that block the attachment of the RBD to host cell angiotensin-converting enzyme 2 (ACE2) represent promising drug candidates. In this study, we reported the identification and structural biological characterization of a nanobody from a RBD-immunized alpaca. The nanobody, termed as 2S-1-19, shows outstanding neutralizing activity against both pseudotyped and authentic SARS-CoV-2 viruses. The crystal structure of 2S-1-19 bound to SARS-CoV-2 RBD reveals an epitope that overlaps with the binding site for ACE2. We also showed that 2S-1-19 reserves promising, though compromised, neutralizing activity against the Delta variant and that the trivalent form of 2S-1-19 remarkably increases its neutralizing capacity. Despite this, neither the monomeric or trimeric 2S-1-19 could neutralize the Omicron BA.1.1 variant, possibility due to the E484A and Q493K mutations found within this virus variant. These data provide insights into immune evasion caused by SARS-CoV-2 variants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Epitopes , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibodies, Viral
18.
Adv Sci (Weinh) ; 11(9): e2303366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105421

ABSTRACT

To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Viral Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/prevention & control , SARS-CoV-2 , Middle East Respiratory Syndrome Coronavirus/chemistry , Models, Animal
19.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38038429

ABSTRACT

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Nonstructural Proteins , Animals , Humans , Mice , Amino Acid Substitution , Camelus , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...