Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32435, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961989

ABSTRACT

An efficient method was discovered for catalyzing the esterification under air using Novozym 435 to obtain pyridine esters. The following conditions were found to be optimal: 60 mg of Novozyme 435, 5.0 mL of n-hexane, a molar ratio of 2:1 for nicotinic acids (0.4 mmol) to alcohols (0.2 mmol), 0.25 g of molecular sieve 3A, a revolution speed of 150 rpm, a reaction temperature of 50 °C, and reaction time of 48 h. Under nine cycles of Novozym 435, the 80 % yield was consistently obtained. Optimum conditions were used to synthesize 23 pyridine esters, including five novel compounds. Among them, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) showed phenethyl nicotinate (3g), (E)-hex-4-en-1-yl nicotinate (3m), and octyl nicotinate (3n) possessed strong aromas. Thermogravimetric analysis (TG) revealed that the compounds 3g, 3m and 3n exhibited stability at the specified temperature. This finding provides theoretical support for adding pyridine esters fragrance to high-temperature processed food.

2.
Front Microbiol ; 15: 1361649, 2024.
Article in English | MEDLINE | ID: mdl-38567079

ABSTRACT

Introduction: Air curing (AC) plays a crucial role in cigar tobacco leaf production. The AC environment is relatively mild, contributing to a diverse microbiome. Fungi are important components of the tobacco and environmental microbiota. However, our understanding of the composition and function of fungal communities in AC remains limited. Methods: In this study, changes in the chemical constituents and fungal community composition of cigar tobacco leaves during AC were evaluated using flow analysis and high-throughput sequencing. Results: The moisture, water-soluble sugar, starch, total nitrogen, and protein contents of tobacco leaves exhibited decreasing trends, whereas nicotine showed an initial increase, followed by a decline. As determined by high-throughput sequencing, fungal taxa differed among all stages of AC. Functional prediction showed that saprophytic fungi were the most prevalent type during the AC process and that the chemical composition of tobacco leaves is significantly correlated with saprophytic fungi. Conclusion: This study provides a deeper understanding of the dynamic changes in fungal communities during the AC process in cigar tobacco leaves and offers theoretical guidance for the application of microorganisms during the AC process.

3.
Plant Direct ; 7(12): e551, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38099080

ABSTRACT

Tobacco wildfire disease caused by Pseudomonas syringae pv. tabaci is one of the most destructive foliar bacterial diseases occurring worldwide. However, the effect of wildfire disease on cigar tobacco leaves has not been clarified in detail. In this study, the differences in microbiota and chemical factors between wildfire disease-infected leaves and healthy leaves were characterized using high-throughput Illumina sequencing and a continuous-flow analytical system, respectively. The results demonstrated significant alterations in the structure of the phyllosphere microbial community in response to wildfire disease, and the infection of P. syringae pv. tabaci led to a decrease in bacterial richness and diversity. Furthermore, the content of nicotine, protein, total nitrogen, and Cl- in diseased leaves significantly increased by 47.86%, 17.46%, 20.08%, and 72.77% in comparison to healthy leaves, while the levels of total sugar and reducing sugar decreased by 59.59% and 70.0%, respectively. Notably, the wildfire disease had little effect on the content of starch and K+. Redundancy analysis revealed that Pseudomonas, Staphylococcus, Cladosporium, and Wallemia displayed positive correlations with nicotine, protein, total nitrogen, Cl- and K+ contents, while Pantoea, Erwinia, Sphingomonas, Terrisporobacter, Aspergillus, Alternaria, Sampaiozyma, and Didymella displayed positive correlations with total sugar and reducing sugar contents. Brevibacterium, Brachybacterium, and Janibacter were found to be enriched in diseased leaves, suggesting their potential role in disease suppression. Co-occurrence network analysis indicated that positive correlations were prevalent in microbial networks, and the bacterial network of healthy tobacco leaves exhibited greater complexity compared to diseased tobacco leaves. This study revealed the impact of wildfire disease on the microbial community and chemical compositions of tobacco leaves and provides new insights for the biological control of tobacco wildfire disease.

4.
Chem Asian J ; 18(22): e202300725, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37789733

ABSTRACT

This study reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. The manganese complex demonstrated a broad applicability under mild conditions and extended the range of usable substrates. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, ß-unsaturated ketones in good isolated yields.

5.
BMC Chem ; 17(1): 123, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37742035

ABSTRACT

In the present work a simple enzymatic approach (Novozym 435) for transesterification to synthesize pyrrole esters was reported. To generate the best reaction conditions, which resulted in the optimum yield of 92%, the effects of lipase type, solvent, lipase load, molecular sieves, substrate molar ratio of esters to alcohol, reaction temperature, reaction duration, and speed of agitation were evaluated. The range of alcohols was assessed under optimal circumstances. The spectrum observations conclusively demonstrated that the compounds could be generated with high yield under the circumstances utilized for synthesis. The odor characteristics of the pyrrolyl esters obtained were examined by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Among them, compounds of benzhydryl 1H-pyrrole-2-carboxylate (3j), butyl 1H-pyrrole-2-carboxylate (3k) and pentyl 1H-pyrrole-2-carboxylate (3l) present sweet and acid aroma. In addition, the thermal degradation process was further studied using the Py-GC/MS (pyrolysis-gas chromatography/mass spectrometry), TG (thermogravimetry), and DSC (differential scanning calorimeter) techniques. The outcomes of the Py-GC/MS, TG, and DSC techniques show that they have excellent thermal stability.

6.
Talanta ; 260: 124628, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37149940

ABSTRACT

Ferroptosis is a newly discovered form of regulated cellular demise, characterized by the accumulation of intracellular oxidative stress that is dependent on iron. Ferroptosis plays a crucial role not only in the development and treatment of tumors but also in the pathogenesis of neurodegenerative diseases and illnesses related to ischemia-reperfusion injury. This mode of cell death possesses distinctive properties that differentiate it from other forms of cell death, including unique morphological changes at both the cellular and subcellular levels, as well as molecular features that can be detected using specific methods. The use of fluorescent probes has become an invaluable means of detecting ferroptosis, owing to their high sensitivity, real-time in situ monitoring capabilities, and minimal damage to biological samples. This review comprehensively elucidates the physiological mechanisms underlying ferroptosis, while also detailing the development of fluorescent probes capable of detecting ferroptosis-related active species across various cellular compartments, including organelles, the nucleus, and the cell membrane. Additionally, the review explores how the dynamic changes and location of active species from different cellular compartments can influence the ignition and execution of ferroptotic cell death. Finally, we discuss the future challenges and opportunities for imaging ferroptosis. We believe that this review will not only aid in the elucidation of ferroptosis's physiological mechanisms but also facilitate the identification of novel treatment targets and means of accurately diagnosing and treating ferroptosis-related diseases.


Subject(s)
Ferroptosis , Fluorescent Dyes , Cell Death , Iron/metabolism , Oxidative Stress
7.
Chemistry ; 29(39): e202203758, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37114329

ABSTRACT

Herein, an efficient and green procedure for the synthesis of tetrahydro-ß-carbolines via dehydrogenative coupling of alcohols with tryptamines is reported. The reaction was carried out under mild conditions in the presence of a catalytic amount of the iPr PNP-Mn catalyst and a weak base (Na2 CO3 ). This method tolerated a variety of benzylic and aliphatic alcohol substrates with different functional groups and afforded diverse products in good to excellent isolated yields using tryptamines. Using this strategy, we successfully synthesised pharmaceutical molecules harman, harmaline, and harmine in a concise manner.

8.
ACS Omega ; 8(8): 7699-7713, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872968

ABSTRACT

Nickel-catalyzed amidation of aryl alkynyl acids using tetraalkylthiuram disulfides as the amine source is described, affording a series of aryl alkynyl amides in good to excellent yields under mild conditions. This general methodology provides an alternative pathway for the synthesis of useful aryl alkynyl amides in an operationally simple manner, which shows its practical synthetic value in organic synthesis. The mechanism of this transformation was explored through control experiments and DFT calculations.

9.
Environ Sci Pollut Res Int ; 30(19): 56580-56593, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36920603

ABSTRACT

The treatment of polluted water is a serious environmental problem in the world. Biomass is easily modified and can be prepared into adsorbent materials, which is expected to solve the problem of heavy metal ion adsorption in sewage. In this paper, esterified tobacco straw based hydrogels (ETS-PAA) were synthesized from waste tobacco straw biomass. The structure and thermal stability of these hydrogels were characterized by FTIR, SEM, EDS, XPS and TG. The adsorption of metal ions by the hydrogel was measured by ICP-MS. The effects of initial ion concentration, adsorption time, pH, and temperature on the heavy metal adsorption were investigated. The results showed that ETS-PAA possessed more pores, which led to a better adsorption capacity. The maximum adsorption amounts of Pb2+, Cu2+ and Cd2+ were 2.41 mmol·g-1, 1.93 mmol·g-1 and 1.77 mmol·g-1, respectively. Finally, the adsorption mechanism and kinetics were analyzed. The adsorption was mainly accomplished by ion exchange of -COOK on the monomer chain with heavy metal ions, coordination of -OH and -CONH with heavy metal ions and interaction of ester bond, -COOH with heavy metal ions. The adsorption process was in accordance with the pseudo-second-order kinetic model and Freundlich model. The adsorption process belonged to multilayer chemisorption. This work shows that ETS-PAA was a promising material for the removal of heavy metal pollutants from aqueous solution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium/chemistry , Hydrogels/chemistry , Lead , Biomass , Metals, Heavy/chemistry , Water/chemistry , Ions , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
10.
Anal Bioanal Chem ; 415(5): 867-874, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36564526

ABSTRACT

Ochratoxin A (OTA) poses severe risks to the environment and human health, making the development of an accurate and sensitive analytical method for OTA detection essential. In this study, a catalytic hairpin assembly (CHA)-based Förster resonance energy transfer (FRET) aptasensor was developed to detect OTA using carbon quantum dots (CDs) and 6-carboxy-fluorescein (FAM) as dual signal readout. In the presence of OTA, the aptamer specifically interacted with OTA to release the helper DNA (HP), which could open the hairpin structure of FAM-labeled hairpin DNA 1 (H1-FAM) modified on the surface of gold nanoparticles (AuNPs). CHA between H1-FAM and hairpin H2 labeled with CDs (H2-CDs) can release HP for the next cycle, resulting in the occurrence of FRET with CDs as the energy donor and FAM as the energy acceptor. According to the ratio of FCDs/FFAM, the proposed aptasensor showed a wide linear range from 5.0 pg/mL to 3.0 ng/mL and a low detection limit of 1.5 pg/mL for OTA detection. Moreover, satisfactory results were obtained for OTA detection in rice, suggesting the potential application of this sensor in food safety analysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Ochratoxins , Humans , Fluorescence Resonance Energy Transfer/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Ochratoxins/analysis , Biosensing Techniques/methods , Limit of Detection
11.
Bioresour Bioprocess ; 10(1): 74, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38647588

ABSTRACT

Fermentation is the key process required for developing the characteristic properties of cigar tobacco leaves, complex microorganisms are involved in this process. However, the microbial fermentation mechanisms during the fermentation process have not been well-characterized. This study investigated the dynamic changes in conventional chemical composition, flavor compounds, and bacterial community during the fermentation of cigar tobacco leaves from Hainan and Sichuan provinces in China, as well as the potential roles of bacteria. Fermentation resulted in a reduction of conventional chemical components in tobacco leaves, with the exception of a noteworthy increase in insoluble protein content. Furthermore, the levels of 10 organic acids and 19 amino acids showed a significant decrease, whereas the concentration of 30 aromatic substances exhibited a unimodal trend. Before fermentation, the bacterial community structures and dominant bacteria in Hainan and Sichuan tobacco leaves differed significantly. As fermentation progressed, the community structures in the two regions became relatively similar, with Delftia, Ochrobactrum, Rhodococcus, and Stenotrophomonas being dominant. Furthermore, a total of 12 functional bacterial genera were identified in Hainan and Sichuan tobacco leaves using bidirectional orthogonal partial least squares (O2PLS) analysis. Delftia, Ochrobactrum, and Rhodococcus demonstrated a significant negative correlation with oleic acid and linoleic acid, while Stenotrophomonas and Delftia showed a significant negative correlation with undesirable amino acids, such as Ala and Glu. In addition, Bacillus showed a positive correlation with benzaldehyde, while Kocuria displayed a positive correlation with 2-acetylfuran, isophorone, 2, 6-nonadienal, and ß-damascenone. The co-occurrence network analysis of microorganisms revealed a prevalence of positive correlations within the bacterial network, with non-abundant bacteria potentially contributing to the stabilization of the bacterial community. These findings can improve the overall tobacco quality and provide a novel perspective on the utilization of microorganisms in the fermentation of cigar tobacco leaves.

12.
Front Chem ; 10: 1054286, 2022.
Article in English | MEDLINE | ID: mdl-36578352

ABSTRACT

In this work, a porous tobacco straw-based polyacrylic acid hydrogel STS-PAA with high adsorption performance was prepared by polymerizing pretreated waste tobacco straw (TS) with acrylic acid/potassium acrylate by UV radiation initiation. The adsorption performance of metal ions was investigated. The effects of different temperatures (25°C, 35°C, and 45°C), adsorption times (1-420 min), pH values (2.0-6.0) and initial concentrations (0.25-4.0 mmol L-1) of metal ions on the adsorption amount of heavy metal ions were investigated. The results showed that the hydrogel had a high removal rate of Pb2+, Cd2+ and Hg2+ in aqueous solution. The adsorption of Pb2+ was particularly effective. When C0 = 4.0 mmol L-1, pH = 6, the equilibrium adsorption amount of Pb2+, Cd2+ and Hg2+ reached 1.49 mmol g-1, 1.02 mmol L-1 and 0.94 mmol g-1, respectively. The chemical structure and morphology of the hydrogels were characterized by FT-IR, EDS, SEM and XPS. The Langmuir model fits well with the adsorption system. The kinetic data suggest the adsorption of Pb2+, Cd2+ and Hg2+ follow the pseudo-first-order model. This indicates that STS-PAA adsorption of three heavy metal ions is monolayer physical adsorption. Thermodynamic analysis shows that the adsorption of Pb2+, Cd2+ and Hg2+ by STS-PAA is an endothermic (ΔH>0) entropy increase (ΔS>0) non-spontaneous reaction.

13.
Org Biomol Chem ; 20(44): 8747-8755, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36314252

ABSTRACT

A novel approach for converting N-substituted acetylpyrroles and primary alcohols into N-substituted pyrrolyl chalcones in air with the assistance of t-BuOK is reported, and several prominent flavor and bioactive molecules were obtained. The process entails oxidizing the alcohols to the corresponding aldehydes, and t-BuOK is crucial to the effective production of CC bonds by aldol condensation. Gas chromatography-mass spectrometry-olfactometry (GC-MS-O) was used to examine the odor properties of pyrrolyl chalcones, which are usually different from those of the associated acetylpyrroles and alcohols. The biological evaluation assay showed that the products (E)-3-(3-fluorophenyl)-1-(1-methyl-1H-pyrrol-2-yl)prop-2-en-1-one (3j), (E)-1-(1-ethyl-1H-pyrrol-2-yl)-3-phenylprop-2-en-1-one (4a), (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-pyrrol-2-yl)prop-2-en-1-one (4e), (E)-3-(4-chlorophenyl)-1-(1-ethyl-1H-pyrrol-2-yl)prop-2-en-1-one (4f) and (E)-1-(1-ethyl-1H-pyrrol-2-yl)-3-(4-fluorophenyl)prop-2-en-1-one (4g) exhibited excellent inhibitory activity against R. solani with EC50 values from 0.0107 to 0.0134 mg mL-1. Molecular docking of 3j with SDH (succinate dehydrogenase) was performed to reveal the binding modes in the active pocket and analyze the interactions between the molecules and the SDH protein. Meanwhile, they have good thermal stability according to the results of thermogravimetry (TG) analysis.


Subject(s)
Chalcone , Chalcones , Chalcones/chemistry , Molecular Docking Simulation , Odorants , Alcohols
14.
Org Biomol Chem ; 20(33): 6542-6546, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35912951

ABSTRACT

Herein, we report the development of an efficient green procedure for synthesizing carbonyl furan derivatives by dehydrogenative coupling of furfuryl alcohol with carbonyl compounds. The reaction is performed under mild reaction conditions in the presence of iPrPNP-Mn as the catalyst and a weak base (Cs2CO3). A range of ketones and aldehydes were efficiently diversified with furfuryl alcohol to afford furyl-substituted saturated ketones, and α,ß-unsaturated ketones and aldehydes in good isolated yields.


Subject(s)
Aldehydes , Ketones , Catalysis , Furans
15.
Chem Asian J ; 17(17): e202200483, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35771722

ABSTRACT

The catalytic dehydrogenation of alcohols is essential for the sustainable production of valuable products. This provides a new strategy for green organic synthesis in chemical industries. Herein, we describe a manganese-based catalytic system that enables the efficient synthesis of C3-alkylated indoles from benzyl alcohols and indoles via the borrowing hydrogen process. Furthermore, dehydrogenative coupling of 2-arylethanols and indoles yields C3-alkenylated indoles. Meanwhile, reacting 2-aminophenethanol instead of indoles can also obtain the corresponding indole products with high selectivity under the same conditions.


Subject(s)
Indoles , Manganese , Alkylation , Catalysis , Molecular Structure
16.
Front Chem ; 10: 867806, 2022.
Article in English | MEDLINE | ID: mdl-35559223

ABSTRACT

We report herein a facile Hiyama cross-coupling reaction of arylsilanes with thiuram reagents (tetraalkylthiuram disulfides or tetraalkylthiuram monosulfide) enabled by copper fluoride. Compared to our previous work, this protocol is an alternative protocol for the generation of S-aryl dithiocarbamates. It features low toxic and readily available substrates, cost-effective promoter, easy performance, and provides good yields.

17.
Life (Basel) ; 12(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35455081

ABSTRACT

Environmental factors affect plant metabolites, different climates, cultivation conditions, and biotic stresses and genotypes strongly affect their chemical composition and contents. Our aim is to examine the environmental and genetic interaction effects on tobacco metabolite composition. UPLC-QTOF MS/MS coupled with multivariate data analyses were applied for the metabolomics analysis of three tobacco cultivars from different planting regions in China. Principal component analysis (PCA) revealed that environmental factors have a greater effect on tobacco metabolism compared to genotypes. Twelve biomarkers were screened by orthogonal partial least squares discrimination analysis (OPLS-DA). Univariate analysis indicated that Malate, conjugated chlorogenic acid, chlorogenic acid, quercetin 3-rutinoside-7-glucoside, and unknown compound 5 were only influenced by environmental factors (independent of genotype). Quinate, neochlorogenic acid, and ouabagenin, taxezopidine K1, taxezopidine K2, and taxezopidine K3 in tobacco were influenced by the interaction of environmental factors and the genotype. Our results suggest that metabolomics based on UPLC-QTOF MS/MS could be used to analyze the ecological functions of biomarker metabolites and understand the mechanisms of plant adaption to the environment.

18.
J Photochem Photobiol B ; 223: 112279, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34425416

ABSTRACT

A novel highly selective and sensitive turn-on fluorescent chemosensor PCE to recognize Zn2+ has been developed. The sensor PCE displays a remarkable fluorescent enhancement at 456 nm (λex = 340 nm) with Zn2+ without the interference of other biologically important relevant metal ions in aqueous acetonitrile solution. Job's plot and mass spectral studies divulge such the interaction of PCE by Zn2+ was 1:1 binding stoichiometry. The association constant and detection limit of PCE to recognize Zn2+ was found to be 0.948 × 104 M-1 and 4.82 × 10-7 M respectively. The nature of turn-on fluorescence sensor was supported by TD-DFT calculations. And the synthesized probe PCE was able to image intracellular Zn2+ in living cells using confocal imaging techniques. PCE-Zn ensemble showed the remarkable fluorescence enhancement with ATP selectively among other biologically important phosphates. 31P NMR experiments suggesting that the triphosphates unit of ATP is intact with the PCEZn. PCE-Zn ensemble can be utilized for monitoring ATP in live cells.


Subject(s)
Adenosine Triphosphate/analysis , Fluorescent Dyes/chemistry , Pyrenes/chemistry , Zinc/chemistry , Adenosine Triphosphate/chemistry , Density Functional Theory , Fluorescent Dyes/analysis , HeLa Cells , Humans , Ions/chemistry , Limit of Detection , Magnetic Resonance Spectroscopy , Microscopy, Fluorescence , Quantum Theory , Schiff Bases/chemistry , Zinc/metabolism
19.
Microbiologyopen ; 10(2): e1171, 2021 02.
Article in English | MEDLINE | ID: mdl-33970539

ABSTRACT

Cigar tobacco leaves (CTLs) contain abundant bacteria and fungi that are vital to leaf quality during fermentation. In this study, artificial fermentation was used for the fermentation of CTLs since it was more controllable and efficient than natural aging. The bacterial and fungal community structure and composition in unfermented and fermented CTLs were determined to understand the effects of microbes on the characteristics of CTLs during artificial fermentation. The relationship between the chemical contents and alterations in the microbial composition was evaluated, and the functions of bacteria and fungi in fermented CTLs were predicted to determine the possible metabolic pathways. After artificial fermentation, the bacterial and fungal community structure significantly changed in CTLs. The total nitrate and nicotine contents were most readily affected by the bacterial and fungal communities, respectively. FAPROTAX software predictions of the bacterial community revealed increases in functions related to compound transformation after fermentation. FUNGuild predictions of the fungal community revealed an increase in the content of saprotrophic fungi after fermentation. These data provide information regarding the artificial fermentation mechanism of CTLs and will inform safety and quality improvements.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Microbiota , Nicotiana/microbiology , Plant Leaves/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Consumer Product Safety , Fermentation , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Humans , Tobacco Products/microbiology
20.
Front Chem ; 9: 822625, 2021.
Article in English | MEDLINE | ID: mdl-35155384

ABSTRACT

A practical method to synthesize N-heteroaryl esters from N-heteroaryl methanols with acyl cyanides via C-C bond cleavage without using any transition metal is demonstrated here. The use of Na2CO3/15-crown-5 couple enables access to a series of N-heteroaryl esters in high efficiency. This protocol is operationally simple and highly environmentally benign producing only cyanides as byproducts.

SELECTION OF CITATIONS
SEARCH DETAIL