Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 152: 106443, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308976

ABSTRACT

The macro scale physical properties of cancellous bone materials are governed by the microstructural features, which is of great significance for the multi-scale research of cancellous bone and the inverse design of bone-mimicking materials. Therefore, it is essential to characterize the natural cancellous bone samples, and reconstruct the microstructures with the biomimetic osteointegration and mechanical properties. In this research, a novel approach for the characterization and reconstruction of cancellous bone was proposed, based on the medical image analysis and anisotropic three-dimensional Gaussian random field (GRF). The geometric similarity, i.e. the interface curvature distribution (ISD), was meticulously studied, which is important to the osteointegration ability. And the mechanical properties were validated by the stress-strain curves under the large compressive strain simulated by the smoothed particle hydrodynamic (SPH) method. In addition, the effects of the generation parameters of GRF-based biomimetic microstructures on the apparent properties were analyzed. The ISD results demonstrated that both GRF and micro-CT groups had the similar columnar morphological properties, while the latter had more hyperbolic features. And it was found that the GRF-based biomimetic microstructures and the natural bone samples based on micro-CT (MCT) had the similar failure mode. The concordance correlation coefficient between MCT and GRF pairs was 0.8685, with a Pearson ρ value of 0.8804, and significance level p<0.0001. The Bland-Altman LoA was 0.1647 MPa with 95 % (1.96SD) lower and upper bound value between -0.2892 and 0.6185 MPa. The two groups had almost the same elastic modulus with the mean absolute percentage error (MAPE) of 7.84 %. While the yield stress and total conversion energy of the GRF-based samples were lower than those of the natural bone samples, and the MAPE were 16.99 % and 16.27 %, respectively. Although it meant the lower structural efficiency, the huge design space of this approach and advanced 3D printing technology can provide great potential for the design of orthopedic implants.


Subject(s)
Bone and Bones , Cancellous Bone , Stress, Mechanical , Elastic Modulus , Prostheses and Implants
2.
Bioengineering (Basel) ; 10(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38002457

ABSTRACT

The Cobb angle (CA) serves as the principal method for assessing spinal deformity, but manual measurements of the CA are time-consuming and susceptible to inter- and intra-observer variability. While learning-based methods, such as SpineHRNet+, have demonstrated potential in automating CA measurement, their accuracy can be influenced by the severity of spinal deformity, image quality, relative position of rib and vertebrae, etc. Our aim is to create a reliable learning-based approach that provides consistent and highly accurate measurements of the CA from posteroanterior (PA) X-rays, surpassing the state-of-the-art method. To accomplish this, we introduce SpineHRformer, which identifies anatomical landmarks, including the vertices of endplates from the 7th cervical vertebra (C7) to the 5th lumbar vertebra (L5) and the end vertebrae with different output heads, enabling the calculation of CAs. Within our SpineHRformer, a backbone HRNet first extracts multi-scale features from the input X-ray, while transformer blocks extract local and global features from the HRNet outputs. Subsequently, an output head to generate heatmaps of the endplate landmarks or end vertebra landmarks facilitates the computation of CAs. We used a dataset of 1934 PA X-rays with diverse degrees of spinal deformity and image quality, following an 8:2 ratio to train and test the model. The experimental results indicate that SpineHRformer outperforms SpineHRNet+ in landmark detection (Mean Euclidean Distance: 2.47 pixels vs. 2.74 pixels), CA prediction (Pearson correlation coefficient: 0.86 vs. 0.83), and severity grading (sensitivity: normal-mild; 0.93 vs. 0.74, moderate; 0.74 vs. 0.77, severe; 0.74 vs. 0.7). Our approach demonstrates greater robustness and accuracy compared to SpineHRNet+, offering substantial potential for improving the efficiency and reliability of CA measurements in clinical settings.

3.
JAMA Netw Open ; 6(8): e2330617, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37610748

ABSTRACT

Importance: Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal disorder. Routine physical examinations by trained personnel are critical to diagnose severity and monitor curve progression in AIS. In the presence of concerning malformation, radiographs are necessary for diagnosis or follow-up, guiding further management, such as bracing correction for moderate malformation and spine surgery for severe malformation. If left unattended, progressive deterioration occurs in two-thirds of patients, leading to significant health concerns for growing children. Objective: To assess the ability of an open platform application (app) using a validated deep learning model to classify AIS severity and curve type, as well as identify progression. Design, Setting, and Participants: This diagnostic study was performed with data from radiographs and smartphone photographs of the backs of adolescent patients at spine clinics. The ScolioNets deep learning model was developed and validated in a prospective training cohort, then incorporated and tested in the AlignProCARE open platform app in 2022. Ground truths (GTs) included severity, curve type, and progression as manually annotated by 2 experienced spine specialists based on the radiographic examinations of the participants' spines. The GTs and app results were blindly compared with another 2 spine surgeons' assessments of unclothed back appearance. Data were analyzed from October 2022 to February 2023. Exposure: Acquisitions of unclothed back photographs using a mobile app. Main Outcomes and Measures: Outcomes of interest were classification of AIS severity and progression. Quantitative statistical analyses were performed to assess the performance of the deep learning model in classifying the deformity as well as in distinguishing progression during 6-month follow-up. Results: The training data set consisted of 1780 patients (1295 [72.8%] female; mean [SD] age, 14.3 [3.3] years), and the prospective testing data sets consisted of 378 patients (279 [73.8%] female; mean [SD] age, 14.3 [3.8] years) and 376 follow-ups (294 [78.2%] female; mean [SD] age, 15.6 [2.9] years). The model recommended follow-up with an area under receiver operating characteristic curve (AUC) of 0.839 (95% CI, 0.789-0.882) and considering surgery with an AUC of 0.902 (95% CI, 0.859-0.936), while showing good ability to distinguish among thoracic (AUC, 0.777 [95% CI, 0.745-0.808]), thoracolumbar or lumbar (AUC, 0.760 [95% CI, 0.727-0.791]), or mixed (AUC, 0.860 [95% CI, 0.834-0.887]) curve types. For follow-ups, the model distinguished participants with or without curve progression with an AUC of 0.757 (95% CI, 0.630-0.858). Compared with both surgeons, the model could recognize severities and curve types with a higher sensitivity (eg, sensitivity for recommending follow-up: model, 84.88% [95% CI, 75.54%-91.70%]; senior surgeon, 44.19%; junior surgeon, 62.79%) and negative predictive values (NPVs; eg, NPV for recommending follow-up: model, 89.22% [95% CI, 84.25%-93.70%]; senior surgeon, 71.76%; junior surgeon, 79.35%). For distinguishing curve progression, the sensitivity and NPV were comparable with the senior surgeons (sensitivity, 63.33% [95% CI, 43.86%-80.87%] vs 77.42%; NPV, 68.57% [95% CI, 56.78%-78.37%] vs 72.00%). The junior surgeon reported an inability to identify curve types and progression by observing the unclothed back alone. Conclusions: This diagnostic study of adolescent patients screened for AIS found that the deep learning app had the potential for out-of-hospital accessible and radiation-free management of children with scoliosis, with comparable performance as spine surgeons experienced in AIS management.


Subject(s)
Deep Learning , Mobile Applications , Monitoring, Physiologic , Scoliosis , Smartphone , Photography , Humans , Adolescent , Scoliosis/classification , Scoliosis/diagnosis , Monitoring, Physiologic/methods , Male , Female
4.
EClinicalMedicine ; 61: 102050, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37425371

ABSTRACT

Background: Adolescent idiopathic scoliosis (AIS) is the most common type of spinal disorder affecting children. Clinical screening and diagnosis require physical and radiographic examinations, which are either subjective or increase radiation exposure. We therefore developed and validated a radiation-free portable system and device utilising light-based depth sensing and deep learning technologies to analyse AIS by landmark detection and image synthesis. Methods: Consecutive patients with AIS attending two local scoliosis clinics in Hong Kong between October 9, 2019, and May 21, 2022, were recruited. Patients were excluded if they had psychological and/or systematic neural disorders that could influence the compliance of the study and/or the mobility of the patients. For each participant, a Red Green Blue-Depth (RGBD) image of the nude back was collected using our in-house radiation-free device. Manually labelled landmarks and alignment parameters by our spine surgeons were considered as the ground truth (GT). Images from training and internal validation cohorts (n = 1936) were used to develop the deep learning models. The model was then prospectively validated on another cohort (n = 302) which was collected in Hong Kong and had the same demographic properties as the training cohort. We evaluated the prediction accuracy of the model on nude back landmark detection as well as the performance on radiograph-comparable image (RCI) synthesis. The obtained RCIs contain sufficient anatomical information that can quantify disease severities and curve types. Findings: Our model had a consistently high accuracy in predicting the nude back anatomical landmarks with a less than 4-pixel error regarding the mean Euclidian and Manhattan distance. The synthesized RCI for AIS severity classification achieved a sensitivity and negative predictive value of over 0.909 and 0.933, and the performance for curve type classification was 0.974 and 0.908, with spine specialists' manual assessment results on real radiographs as GT. The estimated Cobb angle from synthesized RCIs had a strong correlation with the GT angles (R2 = 0.984, p < 0.001). Interpretation: The radiation-free medical device powered by depth sensing and deep learning techniques can provide instantaneous and harmless spine alignment analysis which has the potential for integration into routine screening for adolescents. Funding: Innovation and Technology Fund (MRP/038/20X), Health Services Research Fund (HMRF) 08192266.

SELECTION OF CITATIONS
SEARCH DETAIL
...