Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Publication year range
1.
Eur J Med Chem ; 245(Pt 1): 114860, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36370550

ABSTRACT

In order to take advantage of both immunotherapeutic and metabolic antitumor agents, novel dual indoleamine 2,3- dioxygenase 1 (IDO1) and thioredoxin reductase 1 (TrxR1) inhibitors were designed. Thioredoxin reductase 1 (TrxR1) is a main ROS modulator within CRC cells. Indoleamine 2,3-dioxygenase (IDO1) is crucial controller for tryptophan (Trp) metabolism that is also important for CRC immunotherapy. Herein, ten compounds 12a-j containing hydroxyamidine scaffold were designed, synthesized and evaluated for inhibitory activities against IDO1/TrxR1 enzyme and CRC cells. Among these compounds, the most active compound 12d (ZC0109) showed excellent and balanced activity against both IDO1 (IC50 = 0.05 µM) and TrxR1 (IC50 = 3.00 ± 0.25 µM) were selected for further evaluation. Compound ZC0109 exhibited good dual inhibition against IDO1 and TrxR1 both in vitro and in vivo. Further mechanistic studies reveal that, through IDO1 and TrxR1 inhibition by ZC0109 treatment, accumulated ROS effectively induced apoptosis and G1/S cell cycle arrest in cancer cells. In vivo evaluation demonstrated excellent anti-tumor effect of ZC0109 with the notable ability of promoting ROS-induced apoptosis, reducing kynurenine level in plasma and restoring anti-tumor immune response. Thus, ZC0109 represents a potential CRC therapy agent for further development.


Subject(s)
Colorectal Neoplasms , Enzyme Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Reactive Oxygen Species , Thioredoxin Reductase 1 , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Thioredoxin Reductase 1/antagonists & inhibitors , Cell Line, Tumor , Humans , Apoptosis/drug effects , Colorectal Neoplasms/enzymology
2.
Endocr Connect ; 10(12): 1560-1569, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34738917

ABSTRACT

OBJECTIVE: Previous studies have shown the correlations between serum ferritin and non-alcoholic fatty liver disease (NAFLD) or diabetes. However, this relationship remains unclear in patients with type 2 diabetes (T2DM) with NAFLD. Therefore, this study aimed to elaborate the relationship between serum ferritin levels and NAFLD in middle-aged and older patients with T2DM and further explored the biomarkers for NAFLD in T2DM. METHODS: A total of 805 middle-aged and older patients with T2DM were divided into NAFLD and non-NAFLD groups, and their serum ferritin levels were compared. Next, NAFLD group were divided into five subgroups according to the quintile levels of serum ferritin, and the differences in the constituent ratios of NAFLD were analyzed. A logistic regression analysis was performed to determine the risk factors for NAFLD in patients with T2DM. RESULTS: The serum ferritin levels were significantly higher in T2DM patients with NAFLD (168.47 (103.78, 248.00) ng/mL) than in the non-NAFLD patients (121.19 (76.97, 208.39) ng/mL). The constituent ratios of NAFLD were significantly higher in the F5 and F4 groups than in the F2 or F1 groups (22.70 and 22.70% vs. 15.90 and 16.90%, respectively; P < 0.05). Binary logistic regression analysis showed that serum ferritin (P = 0.001) was an independent risk factor for NAFLD in patients with T2DM. CONCLUSIONS: Serum ferritin levels were significantly increased in T2DM with NAFLD, and the constituent ratios of NAFLD increased gradually along with the increased levels of serum ferritin. Thus, serum ferritin is an independent risk factor for NAFLD in patients with T2DM.

4.
Mol Brain ; 8: 39, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26104391

ABSTRACT

BACKGROUND: Young neurons in the developing brain establish a polarized morphology for proper migration. The PIWI family of piRNA processing proteins are considered to be restrictively expressed in germline tissues and several types of cancer cells. They play important roles in spermatogenesis, stem cell maintenance, piRNA biogenesis, and transposon silencing. Interestingly a recent study showed that de novo mutations of PIWI family members are strongly associated with autism. RESULTS: Here, we report that PIWI-like 1 (PIWIL1), a PIWI family member known to be essential for the transition of round spermatid into elongated spermatid, plays a role in the polarization and radial migration of newborn neurons in the developing cerebral cortex. Knocking down PIWIL1 in newborn cortical neurons by in utero electroporation of specific siRNAs resulted in retardation of the transition of neurons from the multipolar stage to the bipolar stage followed by a defect in their radial migration to the proper destination. Domain analysis showed that both the RNA binding PAZ domain and the RNA processing PIWI domain in PIWIL1 were indispensable for its function in neuronal migration. Furthermore, we found that PIWIL1 unexpectedly regulates the expression of microtubule-associated proteins in cortical neurons. CONCLUSIONS: PIWIL1 regulates neuronal polarization and radial migration partly via modulating the expression of microtubule-associated proteins (MAPs). Our finding of PIWIL1's function in neuronal development implies conserved functions of molecules participating in morphogenesis of brain and germline tissue and provides a mechanism as to how mutations of PIWI may be associated with autism.


Subject(s)
Argonaute Proteins/metabolism , Cell Movement , Cell Polarity , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , DNA Methylation/genetics , Gene Knockdown Techniques , Humans , Mice, Inbred C57BL , Mitosis , Neurons/metabolism , Protein Structure, Tertiary , RNA Stability , Rats, Sprague-Dawley
5.
Phytother Res ; 28(10): 1533-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24820380

ABSTRACT

Galangin, the main active component of Alpinia officinarum Hance, was tested in a mouse model of vitiligo induced in C57BL/6 mice by the topical application of 2 mL of 2.5% hydroquinone daily to shaved areas (2 × 2 cm) of dorsal skin for 60 days. Thirty days after the final application of hydroquinone, galangin (0.425, and 4.25 mg/kg) was administered orally for 30 days. The hair colour darkened when it grew back after treatment, and histological analysis showed that the number of melanin-containing hair follicles had increased after treatment with all doses of galangin groups and 8-methoxypsoralen (8-MOP, the positive control) compared with the untreated vitiligo group (p < 0.05). The number of skin basal layer melanocytes and melanin-containing epidermal cells had also increased significantly with the application of 4.25 mg/kg of galangin. The concentration of tyrosinase (TYR) in serum was found to have increased, whereas the content of malondialdehyde and the activity of cholinesterase had decreased after treatment with all doses of galangin and 8-MOP, compared with control (p < 0.05). The expression of TYR protein in treated areas of skin also increased with the application of 4.25 mg/kg galangin and 8-MOP. In conclusion, the results showed that galangin was able to improve vitiligo induced by hydroquinone in mice, with the activity related to concentrations of TYR, expression of TYR protein, activity of malondialdehyde and content of cholinesterase. Galangin may therefore be a potential candidate for the treatment of vitiligo, subject to further investigation.


Subject(s)
Flavonoids/pharmacology , Melanins/metabolism , Melanocytes/drug effects , Vitiligo/drug therapy , Alpinia/chemistry , Animals , Hydroquinones/adverse effects , Male , Malondialdehyde/blood , Methoxsalen/pharmacology , Mice , Mice, Inbred C57BL , Monophenol Monooxygenase/metabolism , Skin/enzymology , Skin/pathology , Vitiligo/chemically induced
6.
Zhongguo Zhong Yao Za Zhi ; 38(9): 1323-6, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23944061

ABSTRACT

OBJECTIVE: To investigate the effect of acteoside on SK-N-SH nerve cell injury induced by okadaic acid (OA). METHOD: SK-N-SH nerve cells were processed with 20 nmol * L OA to establish the Alzheimer's disease (AD) cellular model, and 5, 10, 20 mg . L-1 acteoside was used to antagonize against its effect. Cell morphology was observed under inverted microscope. The cell survival rate was detected with MTT, and the LDH release rate was measured by enzyme label kit. Western blot was applied to determine the expression of phosphorylation tau proteins in nerve cells. RESULT: The acteoside could significantly improve SK-N-SH cell morphology, enhance the cell survival rate, decrease the cell LDH release rate and the expression of phosphorylated tau proteins at p-Ser 199/202 and p-Ser 404 sites, up-regulated the expression of at non-phosphorylated tau proteins at Ser 202 site and Ser 404 sites. CONCLUSION: Acteoside has significant protective effect on nerve cell injury induced by OA.


Subject(s)
Alzheimer Disease/metabolism , Glucosides/pharmacology , Phenols/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Okadaic Acid , tau Proteins/metabolism
7.
BMC Genomics ; 13: 232, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22691069

ABSTRACT

BACKGROUND: The morphogenesis of the cerebral cortex depends on the precise control of gene expression during development. Small non-coding RNAs, including microRNAs and other groups of small RNAs, play profound roles in various physiological and pathological processes via their regulation of gene expression. A systematic analysis of the expression profile of small non-coding RNAs in developing cortical tissues is important for clarifying the gene regulation networks mediating key developmental events during cortical morphogenesis. RESULTS: Global profiling of the small RNA transcriptome was carried out in rat cerebral cortex from E10 till P28 using next-generation sequencing technique. We found an extraordinary degree of developmental stage-specific expression of a large group of microRNAs. A group of novel microRNAs with functional hints were identified, and brain-enriched expression and Dicer-dependent production of high-abundant novel microRNAs were validated. Profound editing of known microRNAs at "seed" sequence and flanking sequence was observed, with much higher editing events detected at late postnatal stages than embryonic stages, suggesting the necessity of microRNA editing for the fine tuning of gene expression during the formation of complicated synaptic connections at postnatal stages. CONCLUSION: Our analysis reveals extensive regulation of microRNAs during cortical development. The dataset described here will be a valuable resource for clarifying new regulatory mechanisms for cortical development and diseases and will greatly contribute to our understanding of the divergence, modification, and function of microRNAs.


Subject(s)
Cerebral Cortex/embryology , Gene Expression Profiling , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Animals , Cluster Analysis , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA
8.
Planta ; 233(2): 299-308, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21046144

ABSTRACT

Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.


Subject(s)
Arabidopsis/virology , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Plant Diseases/virology , Plant Viruses/drug effects , Salicylic Acid/pharmacology , Solanaceae/virology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Cyclopentanes/administration & dosage , Oxylipins/administration & dosage , Plant Leaves/drug effects , Plant Leaves/virology , Salicylic Acid/administration & dosage , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...