Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6677): 1422-1427, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38060675

ABSTRACT

Twisted interfaces between stacked van der Waals (vdW) cuprate crystals present a platform for engineering superconducting order parameters by adjusting stacking angles. Using a cryogenic assembly technique, we construct twisted vdW Josephson junctions (JJs) at atomically sharp interfaces between Bi2Sr2CaCu2O8+x crystals, with quality approaching the limit set by intrinsic JJs. Near 45° twist angle, we observe fractional Shapiro steps and Fraunhofer patterns, consistent with the existence of two degenerate Josephson ground states related by time-reversal symmetry (TRS). By programming the JJ current bias sequence, we controllably break TRS to place the JJ into either of the two ground states, realizing reversible Josephson diodes without external magnetic fields. Our results open a path to engineering topological devices at higher temperatures.

3.
Phys Rev Lett ; 122(24): 247001, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31322397

ABSTRACT

We developed novel techniques to fabricate atomically thin Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+δ} van der Waals heterostructures down to two unit cells while maintaining a transition temperature T_{c} close to the bulk, and carry out magnetotransport measurements on these van der Waals devices. We find a double sign change of the Hall resistance R_{xy} as in the bulk system, spanning both below and above T_{c}. Further, we observe a drastic enlargement of the region of sign reversal in the temperature-magnetic field phase diagram with decreasing thickness of the device. We obtain quantitative agreement between experimental R_{xy}(T,B) and the predictions of the vortex dynamics-based description of Hall effect in high-temperature superconductors both above and below T_{c}.

4.
Nature ; 558(7710): 425-429, 2018 06.
Article in English | MEDLINE | ID: mdl-29925970

ABSTRACT

Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storage1-4. Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice5,6. The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices7-12. However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures 13 of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX2; X = S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX2 results in a more than tenfold greater accumulation of charge in MoX2 when compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices.

5.
Nano Lett ; 18(1): 460-466, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29268017

ABSTRACT

Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electrochemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new heterointerface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density >5 × 1013 cm2 with mobility >103 cm2/(V s) in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...