Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1122, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321056

ABSTRACT

Gene therapies provide treatment options for many diseases, but the safe and long-term control of therapeutic transgene expression remains a primary issue for clinical applications. Here, we develop a muscone-induced transgene system packaged into adeno-associated virus (AAV) vectors (AAVMUSE) based on a G protein-coupled murine olfactory receptor (MOR215-1) and a synthetic cAMP-responsive promoter (PCRE). Upon exposure to the trigger, muscone binds to MOR215-1 and activates the cAMP signaling pathway to initiate transgene expression. AAVMUSE enables remote, muscone dose- and exposure-time-dependent control of luciferase expression in the livers or lungs of mice for at least 20 weeks. Moreover, we apply this AAVMUSE to treat two chronic inflammatory diseases: nonalcoholic fatty liver disease (NAFLD) and allergic asthma, showing that inhalation of muscone-after only one injection of AAVMUSE-can achieve long-term controllable expression of therapeutic proteins (ΔhFGF21 or ΔmIL-4). Our odorant-molecule-controlled system can advance gene-based precision therapies for human diseases.


Subject(s)
Alprostadil , Cycloparaffins , Mice , Humans , Animals , Alprostadil/metabolism , Transgenes , Cycloparaffins/metabolism , Odorants , Receptors, G-Protein-Coupled/metabolism , Dependovirus/genetics , Genetic Vectors
2.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38237602

ABSTRACT

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Subject(s)
Receptors, Glucagon , Renal Insufficiency, Chronic , Humans , Animals , Mice , Receptors, Glucagon/metabolism , Down-Regulation , Mice, Knockout , Kidney/metabolism , Homeostasis/physiology , Lipids
3.
Diabetes ; 73(2): 197-210, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37935033

ABSTRACT

Partial leptin reduction can induce significant weight loss, while weight loss contributes to partial leptin reduction. The cause-and-effect relationship between leptin reduction and weight loss remains to be further elucidated. Here, we show that FGF21 and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide rapidly induced a reduction in leptin. This leptin reduction contributed to the beneficial effects of GLP-1R agonism in metabolic health, as transgenically maintaining leptin levels during treatment partially curtailed the beneficial effects seen with these agonists. Moreover, a higher degree of leptin reduction during treatment, induced by including a leptin neutralizing antibody with either FGF21 or liraglutide, synergistically induced greater weight loss and better glucose tolerance in diet-induced obese mice. Furthermore, upon cessation of either liraglutide or FGF21 treatment, the expected immediate weight regain was observed, associated with a rapid increase in circulating leptin levels. Prevention of this leptin surge with leptin neutralizing antibodies slowed down weight gain and preserved better glucose tolerance. Mechanistically, a significant reduction in leptin induced a higher degree of leptin sensitivity in hypothalamic neurons. Our observations support a model that postulates that a reduction of leptin levels is a necessary prerequisite for substantial weight loss, and partial leptin reduction is a viable strategy to treat obesity and its associated insulin resistance.


Subject(s)
Leptin , Liraglutide , Animals , Mice , Leptin/metabolism , Liraglutide/pharmacology , Obesity , Weight Loss , Glucose/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism
4.
Sci Transl Med ; 15(723): eade8460, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37992151

ABSTRACT

Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs.


Subject(s)
Antipsychotic Agents , Metabolic Diseases , Humans , Mice , Animals , Antipsychotic Agents/adverse effects , Leptin/metabolism , Obesity/metabolism , Weight Gain
5.
Cell Discov ; 9(1): 115, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989733

ABSTRACT

Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)-SNAP23-SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18-SNAP23-SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18-SNAP23-SEC22B in LD fusion.

6.
Mol Metab ; 78: 101821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806486

ABSTRACT

The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and ß cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of ß cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic ß cell-specific PPARα (ß-PPARα) and HNF4α (ß-HNF4α) overexpression mice. ß-PPARα mice exhibited improved protection from lipotoxicity, but elevated ß-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. ß-HNF4α mice showed a more severe phenotype when compared to ß-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of ß-PPARα and ß-HNF4α. Given that ß-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Mice , Adiponectin/genetics , Adiponectin/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
7.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609338

ABSTRACT

Innate immune activation plays a vital role in the development of Alzheimer's disease (AD) and related dementias (ADRD). Among which, the DNA sensing cyclic GMP-AMP synthase (cGAS)- STING pathway has been implicated in diverse aspects of AD progression. In the current study, we showed that the cGAS-STING signaling was up-regulated in AD and this elevation was mainly contributed by the microglial population other than non-microglial cell types in the brain. By establishing an inducible, microglia-specific cGAS knockout mouse model in 5xFAD background, we found that deleting microglial cGAS at the onset of amyloid-ß (Aß) pathology significantly limited plaque formation, and protected mice from Aß-induced cognitive impairment. Mechanistically, we found cGAS was necessary for plaque-associated microglial enrichment potentially driven by IRF8, and was indispensable for the development of disease-associated microglia (DAM) phenotype. Meanwhile, the loss of microglial cGAS reduced the levels of dystrophic neurites which led to preserved synaptic integrity and neuronal function. Our study provides new insights in understanding the effects of innate immune in AD via a cell-type specific manner, and lays the foundation for potential targeted intervention of the microglial cGAS-STING pathway toward the improvement of AD.

8.
Biology (Basel) ; 12(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37626991

ABSTRACT

Bile acids serve a vital function in lipid digestion and absorption; however, their accumulation can precipitate liver damage. In our study, we probed the effects of dimethyl sulfoxide (DMSO) on bile acid synthesis and the ensuing liver damage in mice induced by bile acids. Our findings indicate that DMSO efficaciously curbs bile acid synthesis by inhibiting key enzymes involved in the biosynthetic pathway, both in cultured primary hepatocytes and in vivo. Contrarily, we observed that DMSO treatment did not confer protection against bile-acid-induced liver damage in two distinct mouse models: one induced by a 0.1% DDC diet, leading to bile duct obstruction, and another induced by a CDA-HFD, resulting in non-alcoholic steatohepatitis (NASH). Histopathological and biochemical analyses unveiled a comparable extent of liver injury and fibrosis levels in DMSO-treated mice, characterized by similar levels of increase in Col1a1 and Acta2 expression and equivalent total liver collagen levels. These results suggest that, while DMSO can promptly inhibit bile acid synthesis in healthy mice, compensatory mechanisms might rapidly override this effect, negating any protective impact against bile-acid-induced liver damage in mice. Through these findings, our study underscores the need to reconsider treating DMSO as a mere inert solvent and prompts further exploration to identify more effective therapeutic strategies for the prevention and treatment of bile-acid-associated liver diseases.

9.
Cell Rep ; 40(11): 111362, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103820

ABSTRACT

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Adipocytes/metabolism , Animals , Breast Neoplasms/pathology , Extracellular Matrix/metabolism , Female , Humans , Mammary Neoplasms, Animal/pathology , Tumor Microenvironment
10.
Acta Pharm Sin B ; 12(7): 3063-3072, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35865093

ABSTRACT

Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the ß 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.

12.
J Transl Int Med ; 10(3): 219-226, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36776231

ABSTRACT

It is important to understand how different human organs coordinate and interact with each other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, nucleic acids, and even organelles shuttle between the adipose tissues and heart. These bioactive components can profoundly affect the metabolism of cells in distal organs, including heart. Importantly, this process can be dysregulated under pathophysiological conditions. This also opens the door to efforts targeting these mediators as potential therapeutic strategies to treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the recent progress toward a better understanding of how the adipose tissues and heart interact with each other.

13.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34499619

ABSTRACT

The endocannabinoid system regulates appetite and energy expenditure and inhibitors of cannabinoid receptor 1 (CB-1) induce weight loss with improvement in components of the metabolic syndrome. While CB-1 blockage in brain is responsible for weight loss, many of the metabolic benefits associated with CB-1 blockade have been attributed to inhibition of CB-1 signaling in the periphery. As a result, there has been interest in developing a peripherally restricted CB-1 inhibitor for the treatment of nonalcoholic fatty liver disease (NAFLD) that would lack the unwanted centrally mediated side effects. Here, we produced mice that lacked CB-1 in hepatocytes or stellate cells to determine if CB-1 signaling contributes to the development of NAFLD or liver fibrosis. Deletion of CB-1 in hepatocytes did not alter the development of NAFLD in mice fed a high-sucrose diet (HSD) or a high-fat diet (HFD). Similarly, deletion of CB-1 specifically in stellate cells also did not prevent the development of NAFLD in mice fed the HFD, nor did it protect mice from carbon tetrachloride-induced fibrosis. Combined, these studies do not support a direct role for hepatocyte or stellate cell CB-1 signaling in the development of NAFLD or liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Receptor, Cannabinoid, CB1/physiology , Animals , Diet, High-Fat , Liver Cirrhosis/etiology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Signal Transduction/physiology
14.
Nat Commun ; 12(1): 4829, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376643

ABSTRACT

Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Dioxoles/pharmacology , Glucose/metabolism , Hyaluronic Acid/metabolism , Lipolysis/drug effects , Adipocytes/cytology , Adipose Tissue/cytology , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Female , Glucose Intolerance/metabolism , Homeostasis , Humans , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Transgenic , Obesity/etiology , Obesity/metabolism
15.
Cell Metab ; 33(8): 1624-1639.e9, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34174197

ABSTRACT

Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.


Subject(s)
Adipocytes , Adipose Tissue , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Iron/metabolism , Lipids , Mice , Obesity/metabolism
16.
Circulation ; 144(9): 712-727, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34102853

ABSTRACT

BACKGROUND: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. METHODS: Cardiac-specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac-specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction. Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and nuclear magnetic resonance spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. RESULTS: We found that PKM1 expression is reduced in failing human and mouse hearts. It is important to note that cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against transverse aortic constriction-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. CONCLUSIONS: These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.


Subject(s)
Carrier Proteins/genetics , Disease Susceptibility , Heart Failure/etiology , Heart Failure/metabolism , Membrane Proteins/genetics , Myocytes, Cardiac/metabolism , Thyroid Hormones/genetics , Ventricular Remodeling/genetics , Animals , Biomarkers , Carrier Proteins/metabolism , Cell Respiration , Disease Models, Animal , Disease Progression , Enzyme Activation , Gene Expression , Glucose/metabolism , Glycolysis , Heart Failure/physiopathology , Heart Function Tests , Humans , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Models, Biological , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
17.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: mdl-33904399

ABSTRACT

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Subject(s)
Adiponectin/physiology , Aging/metabolism , Aging/physiology , Animals , Female , Glucose/metabolism , Homeostasis , Insulin Resistance/physiology , Lipid Metabolism , Longevity/physiology , Male , Mice , Mice, Transgenic
18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33619103

ABSTRACT

We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted ß-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of ß-cell apoptosis which allows for robust assessment of ß-cell regeneration following caspase-8-induced diabetes, Ab-4 drove a 6.7-fold increase in ß-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-ß-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.


Subject(s)
Antibodies, Monoclonal/pharmacology , Diabetes Mellitus, Experimental/therapy , Glucagon-Secreting Cells/drug effects , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Receptors, Glucagon/antagonists & inhibitors , Animals , Blood Glucose/metabolism , C-Peptide/metabolism , Cell Lineage/drug effects , Cell Transdifferentiation/drug effects , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Gene Expression , Glucagon/antagonists & inhibitors , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Islets of Langerhans Transplantation , Mice , Mice, Inbred NOD , Organ Size/drug effects , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Treatment Outcome
19.
Cell Stem Cell ; 28(4): 685-701.e7, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33539723

ABSTRACT

Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRß signaling within murine white adipose tissue (WAT) PDGFRß+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRß+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRß+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRß+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.


Subject(s)
Adipogenesis , Adipose Tissue , Adipocytes , Adipose Tissue, White , Animals , Diet, High-Fat , Mice , Mice, Inbred C57BL , Obesity
20.
Circ Res ; 128(1): 136-149, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33411633

ABSTRACT

The landmark discoveries of leptin and adiponectin firmly established adipose tissue as a sophisticated and highly active endocrine organ, opening a new era of investigating adipose-mediated tissue crosstalk. Both obesity-associated hyperleptinemia and hypoadiponectinemia are important biomarkers to predict cardiovascular outcomes, suggesting a crucial role for adiponectin and leptin in obesity-associated cardiovascular disorders. Normal physiological levels of adiponectin and leptin are indeed essential to maintain proper cardiovascular function. Insufficient adiponectin and leptin signaling results in cardiovascular dysfunction. However, a paradox of high levels of both leptin and adiponectin is emerging in the pathogenesis of cardiovascular disorders. Here, we (1) summarize the recent progress in the field of adiponectin and leptin and its association with cardiovascular disorders, (2) further discuss the underlying mechanisms for this new paradox of leptin and adiponectin action, and (3) explore the possible application of partial leptin reduction, in addition to increasing the adiponectin/leptin ratio as a means to prevent or reverse cardiovascular disorders.


Subject(s)
Adiponectin/metabolism , Adipose Tissue/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Leptin/metabolism , Obesity/metabolism , Adiponectin/deficiency , Adipose Tissue/drug effects , Adipose Tissue/pathology , Adipose Tissue/physiopathology , Animals , Anti-Obesity Agents/therapeutic use , Bariatric Surgery , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Cardiovascular System/drug effects , Cardiovascular System/pathology , Cardiovascular System/physiopathology , Humans , Metabolism, Inborn Errors/metabolism , Obesity/pathology , Obesity/physiopathology , Obesity/therapy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...