Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Plants (Basel) ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732442

ABSTRACT

Soil alkalization is an important environmental factor limiting crop production. Despite the importance of root secretion in the response of plants to alkali stress, the regulatory mechanism is unclear. In this study, we applied a widely targeted metabolomics approach using a local MS/MS data library constructed with authentic standards to identify and quantify root exudates of wheat under salt and alkali stresses. The regulatory mechanism of root secretion in alkali-stressed wheat plants was analyzed by determining transcriptional and metabolic responses. Our primary focus was alkali stress-induced secreted metabolites (AISMs) that showed a higher secretion rate in alkali-stressed plants than in control and salt-stressed plants. This secretion was mainly induced by high-pH stress. We discovered 55 AISMs containing -COOH groups, including 23 fatty acids, 4 amino acids, 1 amino acid derivative, 7 dipeptides, 5 organic acids, 9 phenolic acids, and 6 others. In the roots, we also discovered 29 metabolites with higher levels under alkali stress than under control and salt stress conditions, including 2 fatty acids, 3 amino acid derivatives, 1 dipeptide, 2 organic acids, and 11 phenolic acids. These alkali stress-induced accumulated carboxylic acids may support continuous root secretion during the response of wheat plants to alkali stress. In the roots, RNAseq analysis indicated that 5 6-phosphofructokinase (glycolysis rate-limiting enzyme) genes, 16 key fatty acid synthesis genes, and 122 phenolic acid synthesis genes have higher expression levels under alkali stress than under control and salt stress conditions. We propose that the secretion of multiple types of metabolites with a -COOH group is an important pH regulation strategy for alkali-stressed wheat plants. Enhanced glycolysis, fatty acid synthesis, and phenolic acid synthesis will provide more energy and substrates for root secretion during the response of wheat to alkali stress.

2.
Front Plant Sci ; 15: 1366108, 2024.
Article in English | MEDLINE | ID: mdl-38567134

ABSTRACT

Leymus chinensis is a dominant halophytic grass in alkalized grasslands of Northeast China. To explore the alkali-tolerance mechanism of L. chinensis, we applied a widely targeted metabolomic approach to analyze metabolic responses of its root exudates, root tissues and leaves under alkali-stress conditions. L. chinensis extensively secreted organic acids, phenolic acids, free fatty acids and other substances having -COOH or phosphate groups when grown under alkali-stress conditions. The buffering capacity of these secreted substances promoted pH regulation in the rhizosphere during responses to alkali stress. L. chinensis leaves exhibited enhanced accumulations of free fatty acids, lipids, amino acids, organic acids, phenolic acids and alkaloids, which play important roles in maintaining cell membrane stability, regulating osmotic pressure and providing substrates for the alkali-stress responses of roots. The accumulations of numerous flavonoids, saccharides and alcohols were extensively enhanced in the roots of L. chinensis, but rarely enhanced in the leaves, under alkali-stress conditions. Enhanced accumulations of flavonoids, saccharides and alcohols increased the removal of reactive oxygen species and alleviated oxygen damage caused by alkali stress. In this study, we revealed the metabolic response mechanisms of L. chinensis under alkali-stress conditions, emphasizing important roles for the accumulation and secretion of organic acids, amino acids, fatty acids and other substances in alkali tolerance.

3.
Front Neurosci ; 18: 1388742, 2024.
Article in English | MEDLINE | ID: mdl-38638693

ABSTRACT

Existing statistical data indicates that an increasing number of people now require rehabilitation to restore compromised physical mobility. During the rehabilitation process, physical therapists evaluate and guide the movements of patients, aiding them in a more effective recovery of rehabilitation and preventing secondary injuries. However, the immutability of mobility and the expensive price of rehabilitation training hinder some patients from timely access to rehabilitation. Utilizing virtual reality for rehabilitation training might offer a potential alleviation to these issues. However, prevalent pose reconstruction algorithms in rehabilitation primarily rely on images, limiting their applicability to virtual reality. Furthermore, existing pose evaluation and correction methods in the field of rehabilitation focus on providing clinical metrics for doctors, and failed to offer patients efficient movement guidance. In this paper, a virtual reality-based rehabilitation training method is proposed. The sparse motion signals from virtual reality devices, specifically head-mounted displays hand controllers, is used to reconstruct full body poses. Subsequently, the reconstructed poses and the standard poses are fed into a natural language processing model, which contrasts the difference between the two poses and provides effective pose correction guidance in the form of natural language. Quantitative and qualitative results indicate that the proposed method can accurately reconstruct full body poses from sparse motion signals in real-time. By referencing standard poses, the model generates professional motion correction guidance text. This approach facilitates virtual reality-based rehabilitation training, reducing the cost of rehabilitation training and enhancing the efficiency of self-rehabilitation training.

4.
Article in English | MEDLINE | ID: mdl-38652186

ABSTRACT

The dynamic change of redox conditions is a key factor in emission of elemental mercury (Hg0) from riparian soils. The objective of this study was to elucidate the influences of redox conditions on Hg0 emission from riparian soils. Soil suspension experiments were conducted to measure Hg0 emission from five Hg-contaminated soil samples in two redox conditions (i.e., treated with air or with N2). In four of the five samples, Hg0 emission was higher in air treatment than on N2 treatment. Remaining one soil, which has higher organic matter than other soils, showed no distinct difference in Hg0 production between air and N2 treatment. In soil suspensions subject to N2 treatment, the dissolved organic carbon (DOC) and Fe2+ concentrations were 3.38- to 1.34-fold and 1.44- to 2.28-fold higher than those in air treatment, respectively. Positive correlations were also found between the DOC and Fe2+ (r = 0.911, p < 0.01) and Hg2+ (r = 0.815, p < 0.01) concentrations in soil solutions, suggesting Fe2+ formation led to the release of DOC, which bound to Hg2+ in the soil and, in turn, limited the availability of Hg2+ for reduction to Hg0 in N2 treatment. On the other hand, for remaining one soil, more Hg2+ might be adsorbed onto the DOM in the air treatment, resulted in the inhibition of Hg0 production in air treatment. These results imply that the organic matter is important to prevent Hg0 production by changing redox condition. Further study is needed to prove the role of organic matter in the production of Hg0.

5.
Front Microbiol ; 15: 1344905, 2024.
Article in English | MEDLINE | ID: mdl-38544859

ABSTRACT

American ginseng residue is an industrial by-product of ginseng saponin extraction, including polysaccharides and amino acids; however, it is often discarded into the natural environment, representing a waste of resources as well as an environmental issue. In this study, we examined the effects of adding American ginseng residue to the basal diet of sika deer. Twelve antler-bearing male sika deer were assigned randomly to groups fed a diet supplemented with 0% (CON), 1% (LGR), and 3% (HGR) American ginseng residue, respectively, (n = 4 per group) for 5 weeks. Supplementation with 3% American ginseng residue significantly increased antler production and feed utilization efficiency in antler-bearing sika deer (p < 0.05). There were no significant differences in serum biochemical indexes among the three groups, but serum immunoglobulin A and glutathione peroxidase levels were significantly increased in the LGR and HGR groups (p < 0.05). Supplementation with American ginseng residue affected rumen fermentation in sika deer, significantly increasing the rumen contents of acetic acid, propionic acid, and total volatile fatty acids, and decreasing rumen fluid pH (p < 0.05), but had no significant effect on microbial protein or ammoniacal nitrogen content. American ginseng residue also affected the rumen bacterial composition, with significant up-regulation of Bacteroidota abundance in the HGR group, significant increases in Fibrobacterota and Fibrobacter abundance in the LGR group, and a significant decrease in Oscillospiraceae_UCG-005. Supplementation with ginseng residue had no significant effect on volatile fatty acids in the feces of sika deer, but did affect the composition of fecal bacteria, with significant decreases in Desulfobacterota and Rikenellaceae_RC9_gut_group in the HGR group, and a significant increase in Ruminococcus in the LGR group (p < 0.05). In addition, the abundance of Paeniclostridium in the feces decreased linearly with increasing concentration of ginseng residue, with a significant difference among the groups (p < 0.05). This study comprehensively evaluated the effects of American ginseng residue as a potential feed additive on the production performance and gastrointestinal bacterial community in antler-bearing sika deer. The results indicated that ginseng residue was a suitable feed additive for improving production performance and health in sika deer.

6.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543015

ABSTRACT

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Subject(s)
Atractylodes , Sesquiterpenes, Eudesmane , Sesquiterpenes , Atractylodes/chemistry , Rhizome/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes, Eudesmane/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Ethnopharmacology , Plant Extracts/pharmacology , Plant Extracts/analysis , Phytotherapy
7.
Acta Cardiol Sin ; 40(2): 225-234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532813

ABSTRACT

Background: Atrial fibrosis is an important factor leading to atrial fibrillation, and the transforming growth factor-ß1/Smad pathway is a key factor in inducing atrial fibrosis. Sirt1 is a member of the histone deacetylase (sirtuin) family, and recent studies have proven its cardioprotective effects. Objectives: This study explored the effect of Sirt1 on atrial fibrosis through the transforming growth factor-ß1/Smad pathway. Methods: We analyzed human right atrial appendage tissues and explored the relationship between Sirt1 and atrial fibrosis at the morphological, functional and molecular levels by Masson trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction and Western blot analysis. Rat atrial fibroblasts were extracted and treated by the Sirt1 agonist resveratrol, inhibitor sirtinol, and recombinant human transforming growth factor-ß1 protein. The expression levels of related proteins were detected by Western blot, and the effect on the migration of atrial fibroblasts was detected by wound healing assay. Results: We found that the expression of Sirt1 was reduced in the right atrial appendage tissues of patients with atrial fibrillation, and the degree of fibrosis was increased. In atrial fibroblasts, the activation of Sirt1 could inhibit the expression of transforming growth factor-ß1/Smad and reduce the development of fibrosis, while inhibiting Sirt1 reduced its inhibitory effect on the transforming growth factor-ß1/Smad pathway. Conclusions: These findings indicate that Sirt1 inhibits atrial fibrosis by downregulating the expression of the transforming growth factor-ß1/Smad pathway, and provide potential targets for the treatment of atrial fibrillation.

8.
AMB Express ; 14(1): 21, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351413

ABSTRACT

Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.

9.
Biotechnol Biofuels Bioprod ; 17(1): 25, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360683

ABSTRACT

BACKGROUND: Bioconversion of plant biomass into biofuels and bio-products produces large amounts of lignin. The aromatic biopolymers need to be degraded before being converted into value-added bio-products. Microbes can be environment-friendly and efficiently degrade lignin. Compared to fungi, bacteria have some advantages in lignin degradation, including broad tolerance to pH, temperature, and oxygen and the toolkit for genetic manipulation. RESULTS: Our previous study isolated a novel ligninolytic bacterial strain Erwinia billingiae QL-Z3. Under optimized conditions, its rate of lignin degradation was 25.24% at 1.5 g/L lignin as the sole carbon source. Whole genome sequencing revealed 4556 genes in the genome of QL-Z3. Among 4428 protein-coding genes are 139 CAZyme genes, including 54 glycoside hydrolase (GH) and 16 auxiliary activity (AA) genes. In addition, 74 genes encoding extracellular enzymes are potentially involved in lignin degradation. Real-time PCR quantification demonstrated that the expression of potential ligninolytic genes were significantly induced by lignin. 8 knock-out mutants and complementary strains were constructed. Disruption of the gene for ELAC_205 (laccase) as well as EDYP_48 (Dyp-type peroxidase), ESOD_1236 (superoxide dismutase), EDIO_858 (dioxygenase), EMON_3330 (monooxygenase), or EMCAT_3587 (manganese catalase) significantly reduced the lignin-degrading activity of QL-Z3 by 47-69%. Heterologously expressed and purified enzymes further confirmed their role in lignin degradation. Fourier transform infrared spectroscopy (FTIR) results indicated that the lignin structure was damaged, the benzene ring structure and groups of macromolecules were opened, and the chemical bond was broken under the action of six enzymes encoded by genes. The abundant enzymatic metabolic products by EDYP_48, ELAC_205 and ESOD_1236 were systematically analyzed via liquid chromatography-mass spectrometry (LC-MS) analysis, and then provide a speculative pathway for lignin biodegradation. Finally, The activities of ligninolytic enzymes from fermentation supernatant, namely, LiP, MnP and Lac were 367.50 U/L, 839.50 U/L, and 219.00 U/L by orthogonal optimization. CONCLUSIONS: Our findings provide that QL-Z3 and its enzymes have the potential for industrial application and hold great promise for the bioconversion of lignin into bioproducts in lignin valorization.

10.
Front Pharmacol ; 14: 1271029, 2023.
Article in English | MEDLINE | ID: mdl-37854713

ABSTRACT

Coronary heart disease (CHD) is the most common clinical manifestation of cardiovascular disease. It is characterized by myocardial ischemia, which is caused by coronary atherosclerosis. CHD is a significant global health problem with increasing prevalence every year because of significant changes in the lifestyles and diets. Ginseng is a traditional Chinese medicinal herb that has been used in food preparations and traditional medicine for several centuries. Several studies have demonstrated that ginseng improved cardiac function by normalizing blood glucose levels and decreasing blood pressure, oxidative stress, platelet aggregation, and lipid dysregulation in vivo. This review describes the current understanding of the mechanisms by which ginseng alleviates CHD, and provides a reference for the clinical development and application of ginseng as an alternative therapy for CHD.

11.
Sci Total Environ ; 880: 163263, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028669

ABSTRACT

High water-holding forests are essential for adapting to drought climates under global warming, and a central issue is which type of forests could conserve more water in the ecosystem. This paper explores how forest structure, plant diversity, and soil physics impact forest water-holding capacities. We investigated 720 sampling plots by measuring water-holding capacities from 1440 soil and litter samples, 8400 leaves, and 1680 branches and surveying 18,054 trees in total (28 species). Water-holding capacities were measured as four soil indices (Maxwc, maximum water-holding capacity; Fcwc, field water-holding capacity; Cpwc, soil capillary water-holding capacity; Ncpwc, non-capillary water-holding capacity), two litter metrics (Maxwcl, maximum water-holding capacity of litters; Ewcl, effective water-holding capacity of litters), and canopy interception (C, the sum of estimated water interception of all branches and leaves of all tree species in the plot). We found that water-holding capacity in the big-sized tree plots was 4-25 % higher in the litters, 54-64 % in the canopy, and 6-37 % in the soils than in the small-sized plots. The higher species richness increased all soil water-holding capacities compared to the lowest richness plot. Higher Simpson and Shannon-Wiener plots had 10-27 % higher Ewcl and C than the lowest plots. Bulk density had the strongest negative relations with Maxwc, Cpwc, and Fcwc, whereas field soil water content positively affected them. Soil physics, forest structure, and plant diversity explained 90.5 %, 5.9 %, and 0.2 % of the water-holding variation, respectively. Tree sizes increased C, Ncpwc, Ewcl directly (p < 0.05), and richness increased Ewcl directly (p < 0.05). However, the direct effects from the uniform angle index (tree distribution evenness) were balanced by their indirect effect from soil physics. Our findings highlighted that the mixed forests with big-sized trees and rich species could effectively improve the water-holding capacities of the ecosystem.


Subject(s)
Ecosystem , Trees , Water , Biodiversity , Forests , China , Soil/chemistry
12.
Nanoscale Adv ; 4(20): 4296-4303, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36321139

ABSTRACT

The tunneling heterojunctions made of two-dimensional (2D) materials have been explored to have many intriguing properties, such as ultrahigh rectification and on/off ratio, superior photoresponsivity, and improved photoresponse speed, showing great potential in achieving multifunctional and high-performance electronic and optoelectronic devices. Here, we report a systematic study of the tunneling heterojunctions consisting of 2D tellurium (Te) and Tin disulfide (SnS2). The Te/SnS2 heterojunctions possess type-II band alignment and can transfer to type-III one under reverse bias, showing a reverse rectification ratio of about 5000 and a current on/off ratio over 104. The tunneling heterojunctions as photodetectors exhibit an ultrahigh photoresponsivity of 50.5 A W-1 in the visible range, along with a dramatically enhanced photoresponse speed. Furthermore, due to the reasonable type-II band alignment and negligible band bending at the interface, Te/SnS2 heterojunctions at zero bias exhibit excellent self-powered performance with a high responsivity of 2.21 A W-1 and external quantum efficiency of 678%. The proposed heterostructure in this work provides a useful guideline for the rational design of a high-performance self-powered photodetector.

13.
Front Nutr ; 9: 928601, 2022.
Article in English | MEDLINE | ID: mdl-36159466

ABSTRACT

Inflammatory activation and intestinal flora imbalance play key roles in the development and progression of inflammatory bowel disease (IBD). Soluble dietary fiber (SDF) and selenium have been proven to be effective for preventing and relieving IBD. This study investigated and compared the therapeutic efficacy of millet-derived selenylated-soluble dietary fiber (Se-SDF) against dextran sulfate sodium (DSS)-induced colitis in mice alone or through the synergistic interaction between selenium and SDF. In female mice, Se-SDF markedly alleviated body weight loss, decreased colon length, reduced histological damage scores, and enhanced IL-10 expression to maintain the barrier function of intestinal mucosa compared to male mice. The 16S rRNA sequence analysis further indicated that pretreatment with Se-SDF restored the gut microbiota composition in female mice by increasing the relative abundance of Lactobacillus and the Firmicutes/Bacteroidetes ratio. In conclusion, these findings demonstrated that Se-SDF can protect against DSS-induced colitis in female mice by regulating inflammation and maintaining gut microbiota balance. This study, therefore, provides new insights into the development of Se-SDF as a supplement for the prevention and treatment of colitis.

14.
Front Nutr ; 9: 885662, 2022.
Article in English | MEDLINE | ID: mdl-35571906

ABSTRACT

The effect of fermentation treatment on the surface morphology, crystal structure, molecular weight, chain length distribution, and physicochemical properties of corn starch was investigated using natural fermentation of corn ballast. The amylose content in corn ballast starch reduced at first after natural fermentation, then grew, following the same trend as solubility. There were certain erosion marks on the surfaces of fermented corn ballast starch granules. The crystalline structure of corn ballast starch remained the same, i.e., a typical A-type crystalline structure, at different fermentation times; however, the intensities of diffraction peaks were different. The weight-average molecular weight of starch first increased and then decreased after fermentation. The content of low-molecular-weight starch (peak 3) decreased from 25.59 to 24.7% and then increased to 25.76%, while the content of high-molecular-weight starch (peak 1) increased from 51.45 to 53.26%, and then decreased to 52.52%. The fermentation time showed a negative correlation with the viscosity of starch, and the pasting temperature first increased, and then decreased. Natural fermentation can be used as a technical means to produce corn starch products as a result of the experiments' findings, and future experiments will detect and analyze the bacterial structure of corn fermentation broth in order to better understand the molecular mechanism of natural fermentation affecting the structure and physicochemical properties of corn starch.

15.
BMC Cancer ; 22(1): 488, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505294

ABSTRACT

BACKGROUND: Emerging evidence has identified miR-138 as a tumor suppressor that can suppress the proliferation of various cancers. Meanwhile, the cause of abnormal miR-138 expression in cervical cancer remains uncertain. This study clarified the mechanism by which miR-138 regulates proliferation, invasion, metastasis, and EMT in cervical cancer cells. RESULTS: miR-138 expression in human cervical cancer and adjacent normal tissue was measured using qPCR. SiHa and C33A cells were used to determine the function of miR-138 via miR-138 mimic or inhibitor transfection, followed by wound healing, Cell Counting Kit-8, flow cytometry, and Transwell assays. Epithelial and mesenchymal marker expression was analyzed using Western blotting. DNA methylation in the miR-138 promoter was examined using bisulfite sequencing PCR. The downstream target genes of miR-138 were identified via bioinformatics analysis and luciferase reporter assays. A tumor xenograft model was employed to validate DNA methylation-induced miR-138 downregulation and tumor growth inhibition in cervical cancer in vivo. miR-138 levels were significantly lower in cervical cancer tissues than in adjacent control tissues. Furthermore, lower miR-138 expression and higher CpG methylation in the miR-138 promoter were identified in lymph node-positive metastatic cervical cancer tumors versus that in non-metastatic tumor tissues. Upon miR-138 overexpression, cell proliferation, metastasis, invasion, and EMT were suppressed. miR-138 agomir transfection and demethylating drug treatment significantly inhibited cervical tumor growth and EMT in tumor xenograft models. DNA methylation inhibited miR-138 transcription, and enhancer of zeste homolog 2 (EZH2) downregulation mediated the tumor suppressor function of miR-138 in cervical cancer. CONCLUSION: We demonstrated that miR-138 suppresses tumor progression by targeting EZH2 in cervical cancer and uncovered the role of DNA methylation in the miR-138 promoter in its downregulation. These findings demonstrated the potential of miR-138 to predict disease metastasis and/or function as a therapeutic target in cervical cancer.


Subject(s)
DNA Methylation , MicroRNAs , Uterine Cervical Neoplasms , Cell Line, Tumor , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
16.
Analyst ; 147(3): 542, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-34989362

ABSTRACT

Correction for 'High-resolution DNA size enrichment using a magnetic nano-platform and application in non-invasive prenatal testing' by Bo Zhang et al., Analyst, 2020, 145, 5733-5739, DOI: 10.1039/D0AN00813C.

17.
Article in English | MEDLINE | ID: mdl-36612564

ABSTRACT

The first global-scale assessment of Sb contamination in soil that was related to mining/smelting activities was conducted based on 91 articles that were published between 1989 and 2021. The geographical variation, the pollution level, the speciation, the influencing factors, and the environmental effects of Sb that were associated with mining/smelting-affected soils were analyzed. The high Sb values mainly occurred in developed (Poland, Italy, Spain, Portugal, New Zealand, Australia) and developing (China, Algeria, Slovakia) countries. Sb concentrations of polluted soil from mining areas that were reported in most countries significantly exceeded the maximum permissible limit that is recommended by WHO, except in Turkey and Macedonia. The soil Sb concentrations decreased in the order of Oceania (29,151 mg/kg) > North Africa (13,022 mg/kg) > Asia (1527 mg/kg) > Europe (858 mg/kg) > South America (37.4 mg/kg). The existing extraction methods for Sb speciation have been classified according to the extractant, however, further research is needed in the standardization of these extraction methods. Modern analytical and characterization technologies, e.g., X-ray absorption spectroscopy, are effective at characterizing chemical speciation. Conditional inference tree (CIT) analysis has shown that the clay content was the major factor that influenced the soil Sb concentration. Non-carcinogenic risks to the public from soil Sb pollution were within the acceptable levels in most regions. An Sb smelter site at the Endeavour Inlet in New Zealand, an abandoned open-pit Sb mine in Djebel Hamimat, Algeria, an old Sb-mining area in Tuscany, Italy, and Hillgrove mine in Australia were selected as the priority control areas. Cynodon dactylon, Boehmeria, Pteris vittata, and Amaranthus paniculatus were found to be potential Sb accumulators. All of the values of bioaccumulation factors for the crops were less than one. However, ingestion of Sb through crop consumption posed potential non-carcinogenic health risks, which should not be neglected. The soil variables (pH, Eh, total sulfur, carbon nitrogen ratio, total organic carbon, and sulfate), the total Sb and the bioavailable Sb, and heavy metal(loid)s (As, Pb, and Fe) were the major parameters affecting the microbial community compositions.


Subject(s)
Metals, Heavy , Soil Pollutants , Antimony/analysis , Soil/chemistry , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , China , Risk Assessment
18.
Sci Total Environ ; 804: 150218, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798744

ABSTRACT

In this study, knowledge gaps on Sb concentration in rocks, ores, tailings, soil, river water, sediments, and crops of mine areas were identified and discussed in terms of contamination levels, spatial distribution, and environmental effects. Accordingly, Xunyang Hg-Sb mine, the largest Hg-Sb deposit in China as research region in this study, field sampling and laboratory analysis were conducted. The results showed elevated concentrations of Sb in the soil, sediment, and river water. The X-ray diffraction analysis indicated that the main minerals of the rocks were quartz, dolomite, calcite, and margarite. Based on the TESCAN integrated mineral analyzer analysis, the main ore minerals in the Gongguan mine were dolomite (93.97%), cinnabar (2.50%), stibnite (2.48%), calcite (0.38%), and quartz (0.38%). The µ-XRF analysis indicated that Sb distribution was similar to those of S and O, instead of those of Hg and As. The clear spatial variation of Sb concentration in environmental media, mines, tailings, and settling ponds affected Sb accumulation. Actinobacteriota, Proteobacteria, Acidobacteriota, and Chloroflexi were the dominant phyla in the soil. Patescibacteria, Proteobacteria, and Bdellovibrionota were negatively correlated with Sb in the soil (p < 0.05). Exposure to Sb through maize grain and cabbage consumption poses serious non-carcinogenic health risk for residents. This work provides a scientific basis for the environmental quality assessment of Sb mine areas and development of applicable guidelines.


Subject(s)
Mercury , Soil Pollutants , Antimony/analysis , China , Environmental Monitoring , Mercury/analysis , Mining , Soil , Soil Pollutants/analysis
19.
Digital Chinese Medicine ; (4): 103-111, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-974068

ABSTRACT

@#Objective This study proposes to visually review the current situation and progress of standards sets by the International Organization for Standardization/Technical Committee on Traditional Chinese Medicine (ISO/TC 249). The review aims to explore the development strategies of the standards, which will exhibit the considerable impact on the economy, trade and exchanges, and cooperation in the area of traditional Chinese medicine (TCM). Methods ISO/TC 249 standards were searched on the ISO website, and their title, proposed time, current stage, scope, and classification were obtained for further summarization. Gephi was utilized to portray the co-occurrence network graph of the ISO/TC 249 standards subject. Results In ISO/TC 249, there were 116 standards, including 81 published standards and 35 developing standards by April 30, 2022. Two withdrawal standards were published after revision, which were not counted in the total standards. The number of published standards has been increasing since the first standard was published in 2014, whose title was “Sterile acupuncture needles for single use”. Among these standards, 17.24% (20/116) standards were in review, 56.03% (65/116) in publication, 3.45% (4/116) in approval, 5.17% (6/116) in enquiry, 3.45% (4/116) in committee, and 14.66% (17/116) in preparation, respectively. With 116 standards, most of the research focused on the medicament, as its classification of the International Classification for Standards (ICS) showed the proportion reaching 49.54%. The network analysis data revealed that the top five most frequent words were “materials” “root” “requirements” “products” and “system”, after removing the noise data, such as prepositions, conjunctions, and pronouns. Additionally, the word “system” co-exists with the terms “computerized” “coding” “image” “tongue” and “analysis”; the word “requirement” co-exists with “manufacturing” “decoction” “process” and “materials”; whereas the word “devices” co-exists with “pulse” “electric” “skin” and “measurement”. Conclusion With the increased diversification and complexity of problems, the development of standards is also oriented to multidisciplinary fields to cultivate the interdisciplinary talents, and especially the international standardization talents of compound TCM. Multi-angle analysis, formulation, and demonstration of standards, in line with industry needs in different disciplines, enhance the availability of standards and the ability to serve the industry.

20.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1450-1458, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34596216

ABSTRACT

Atrial fibrosis is a crucial mechanism responsible for atrial fibrillation (AF). Sex-determining region Y-box containing gene 9 (Sox9) plays a pivotal role in fibrosis of many organs such as the skin, kidney, and liver. However, there are few studies about the occurrence and maintenance of Sox9 in atrial fibrosis. In this study, we investigated the role of Sox9 in the fibrotic phenotype of human atrial tissues and rat atrial fibroblasts in vitro. In the human right atrial tissue, Masson's trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction, and western blot analysis were carried out to explore the relationship between Sox9 and atrial fibrosis at the morphological, functional, and molecular levels. In cultured atrial fibroblasts, Sox9 was overexpressed by adenovirus or depleted by siRNA, and then, recombinant human transforming growth factor (TGF)-ß1 was added. Immunofluorescence analysis, western blot analysis, Transwell assay, and scratch assay were used to analyze the cells. In patient atrial tissues, Sox9 was increased with worsened atrial fibrosis, and this increase was related to AF severity. In rat atrial fibroblasts, Sox9 was promoted by TGF-ß1, and the α-smooth muscle actin (α-SMA) protein level and the ability of cell migration were increased after Sox9 overexpression by adenovirus, while the α-SMA protein level and the cell migration ability were decreased after Sox9 depletion by siRNA. In conclusion, Sox9 is involved in the regulation of fibrosis in the atria and may be located downstream of TGF-ß1. Our findings may provide a new perspective to treat atrial fibrosis during AF.


Subject(s)
Atrial Fibrillation/genetics , Fibroblasts/metabolism , Heart Defects, Congenital/genetics , Rheumatic Heart Disease/genetics , SOX9 Transcription Factor/genetics , Transforming Growth Factor beta1/genetics , Actins/genetics , Actins/metabolism , Adult , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/surgery , Cell Movement , Collagen Type I/genetics , Collagen Type I/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Female , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Heart Atria/metabolism , Heart Atria/pathology , Heart Atria/surgery , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Heart Defects, Congenital/surgery , Humans , Male , Middle Aged , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rheumatic Heart Disease/metabolism , Rheumatic Heart Disease/pathology , Rheumatic Heart Disease/surgery , SOX9 Transcription Factor/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...