Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894677

ABSTRACT

DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.


Subject(s)
Epstein-Barr Virus Infections , MicroRNAs , Humans , NF-kappa B/metabolism , Herpesvirus 4, Human , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Immunity, Innate , DEAD Box Protein 20/metabolism
2.
Zoolog Sci ; 38(2): 179-186, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812357

ABSTRACT

Little is comprehensively known or understood about giant panda fecal and serum metabolites, which could serve as important indicators of the physiological metabolism of giant pandas. Therefore, we determined the contents of fecal and serum metabolites of giant pandas based on an untargeted metabolome. Four hundred and 955 metabolites were detected in the feces and serum of giant panda, respectively. Glycerophospholipid and choline metabolism were the main metabolic pathways in feces and serum. A significant correlation between the gut microbiota and fecal metabolites was found (P < 0.01). Fecal metabolites were not greatly affected by the age or gender of giant pandas, but serum metabolites were significantly affected by age and gender. The majority of different metabolites caused by age were higher in serum of younger giant pandas, including fatty acids, lipids, metabolites of bile acids, and intermediate products of vitamin D3. The majority of different metabolites caused by gender included fatty acids, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE). A separate feeding diet should be considered according to different ages and genders of giant panda. Therefore, our results could provide helpful suggestions to further protect captive giant pandas.


Subject(s)
Feces/microbiology , Metabolomics/methods , Ursidae/metabolism , Aging/blood , Aging/metabolism , Animals , Bacteria/genetics , Female , Gastrointestinal Microbiome , Male , Metagenome , Penicillin G/analogs & derivatives , Ursidae/blood
3.
Curr Microbiol ; 78(4): 1358-1366, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33646379

ABSTRACT

The giant panda (GP) is the most precious animal in China. Gastrointestinal tract disease, especially associated with dysbiosis of gut microbiota, is the leading cause of death in GPs. Here, we performed 16S rRNA high-throughput sequencing to investigate the gut microbiota of GPs having symptoms of anorexia. Results showed that gut microbiota of GP with anorexia had lower richness (Chao1 index) than the healthy GP. However, no significant differences in alpha diversity were observed. There is a significance in the microbial structure between anorexia and healthy GPs. The abundance of phylum Firmicutes (99.23% ± 7.1%), unidentified genus Clostridiales (24.75% ± 2.5%), was significantly higher in the subadult anorexia group (P < 0.01), and that of the unidentified genus Clostridiales (4.53% ± 1.2%) was also significantly higher in the adult anorexia group (P < 0.01). Weissella and Streptococcus were found to be decreased in both anorexia groups. The decreased abundance of Weissella (0.02% ± 0.0%, 0.08% ± 0.0%) and Streptococcus (73.89% ± 4.3%, 91.15% ± 7.6%) and increase in Clostridium may cause symptoms of anorexia in giant pandas. The correlation analysis indicated that there is a symbiotic relationship among Streptococcus, Leuconostoc, Weissella, and Bacillus which are classified as probiotics (r > 0.6, P < 0.05). Importantly, a negative correlation has been found between Streptococcus and unidentified_Clostridium in two groups (r > 0.6, P < 0.05). Our results suggested that Streptococcus might be used as probiotics to control the growth of Clostridium causing the anorexia.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Anorexia , China , Feces , RNA, Ribosomal, 16S/genetics
4.
BMC Microbiol ; 21(1): 15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413128

ABSTRACT

BACKGROUND: The gut microbiome is essential for the host's health and serves as an essential reservoir of antibiotic resistance genes (ARGs). We investigated the effects of different factors, including the dietary shifts and age, on the functional characteristics of the giant panda's gut microbiome (GPs) through shotgun metagenome sequencing. We explored the association between gut bacterial genera and ARGs within the gut based on network analysis. RESULTS: Fecal samples (n=60) from captive juvenile, adult, and geriatric GPs were processed, and variations were identified in the gut microbiome according to different ages, the abundance of novel ARGs and the biosynthesis of antibiotics. Among 667 ARGs identified, nine from the top ten ARGs had a higher abundance in juveniles. For 102 ARGs against bacteria, a co-occurrence pattern revealed a positive association for predominant ARGs with Streptococcus. A comparative KEGG pathways analysis revealed an abundant biosynthesis of antibiotics among three different groups of GPs, where it was more significantly observed in the juvenile group. A co-occurrence pattern further revealed a positive association for the top ten ARGs, biosynthesis of antibiotics, and metabolic pathways. CONCLUSION: Gut of GPs serve as a reservoir for novel ARGs and biosynthesis of antibiotics. Dietary changes and age may influence the gut microbiome's functional characteristics; however, it needs further studies to ascertain the study outcomes.


Subject(s)
Bacteria/classification , Bacterial Proteins/genetics , Metagenomics/methods , Ursidae/growth & development , Age Factors , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Biosynthetic Pathways , Drug Resistance, Bacterial , Feces/microbiology , Gastrointestinal Microbiome , Phylogeny , Sequence Analysis, DNA , Ursidae/microbiology
5.
Biosci. j. (Online) ; 36(6): 2020-2028, 01-11-2020. ilus, tab, graf
Article in English | LILACS | ID: biblio-1148292

ABSTRACT

Pseudomonas syringae pv. actinidiae is a bacterial pathogen of kiwifruit. Based on the results of the pathogenicity assay, we sequenced the strain Pseudomonas syringae (Psa3) P155 which possesses a series of virulence and resistance genes, CRISPR candidate elements, prophage related sequences, methylation modifications, genomic islands as well as one plasmid. Most importantly, the copper resistance genes copA, copB, copC, copD, and copZ as well as aminoglycoside resistance gene ksgA were identified in strain P155, which would pose a threat to kiwifruit production. The complete sequence we reported here will provide valuable information for a better understanding of the genetic structure and pathogenic characteristics of the genome of P155.


Pseudomonas syringae pv. actinidiae agente causal do cancro bacteriano do kiwi. Com base nos resultados do teste de patogenicidade, foi sequenciado um isolado de Pseudomonas syringae (Psa3) P155, que abriga a uma série de genes de virulência e resistência, elementos candidatos CRISPR, sequências relacionadas a profagos, modificações na metilação, ilhas genômicas, e também um plasmídeo. O mais importante foram os genes de resistência ao cobre, copA, copB, copC, copD e copZ, bem como, o gene de resistência aminoglicosídea ksgA identificados na estirpe P155, os quais representariam uma ameaça à produção de kiwi. A sequência completa relatada fornecerá informações valiosas para uma melhor compreensão da estrutura genética e as características patogênicas do genoma de P155.


Subject(s)
Virulence , Actinidia , Pseudomonas syringae , Whole Genome Sequencing
6.
Open Life Sci ; 14: 288-298, 2019 Jan.
Article in English | MEDLINE | ID: mdl-33817162

ABSTRACT

The giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.

7.
Front Microbiol ; 9: 1717, 2018.
Article in English | MEDLINE | ID: mdl-30108570

ABSTRACT

To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, ß-glucosidase, and cellulose ß-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation.

8.
Gut Pathog ; 9: 74, 2017.
Article in English | MEDLINE | ID: mdl-29255489

ABSTRACT

BACKGROUND: Salmonella is recognized as a common bacterial cause of foodborne diarrheal illness worldwide, and animal or its food products have been the most common vehicles of the Salmonella infections. This study aimed to investigate the distribution of Salmonella in two commercial layer farms and to determine the genetic relatedness between these strains. The Salmonella isolates were serotyped by slide agglutination using commercial antisera and analyzed for genetic relatedness using pulsed-field gel electrophoresis (PFGE). RESULTS: The internal environment had the highest prevalence of Salmonella (14/15, 93.3%), followed by external environment (60/96, 62.5%) and egg samples (23/84, 27.3%). The prevalence of Salmonella in the environment was significantly higher than that in egg samples (p < 0.05). The occurrence of Salmonella in the internal environment (93.3%) was relatively higher than in the external environment (55.6-77.2%). The 111 isolates were distributed among 15 PFGE types, and the PFGE results suggested that there existed cross-contamination between these strains not only from eggs, but also from the environments. CONCLUSIONS: The findings indicated ongoing Salmonella cross-contamination inside or outside of the layer farms, and that Salmonella could also spread along the egg production line.

9.
Virol J ; 11: 18, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24490851

ABSTRACT

BACKGROUND: Highly pathogenic avian influenza virus (HPAIV) is a highly contagious disease which is a zoonotic pathogen of significant economic and public health concern. The outbreaks caused by HPAIV H5N1 of Asian origin have caused animal and human disease and mortality in several countries of Southeast Asia, such as Bangladesh, Cambodia, China, India, Indonesia, Laos, Myanmar, Thailand and Viet Nam. For the first time since 1961, this HPAIV has also caused extensive mortality in wild birds and has sparked debate of the role wild birds have played in the spread of this virus. Other than confirmed mortality events, little is known of this virus in wild birds. There is no report on the seroprevalence of avian influenza H5 infection in wild migratory birds in Yunnan Province. In this study we examined live wild birds in Yunnan Province for H5 specific antibody to better understand the occurrence of this disease in free living birds. METHODS: Sera from 440 wild birds were collected from in Kunming and Northern Ailaoshan of Yunnan Province, Southwestern China, and assayed for H5 antibodies using the hemagglutination inhibition (HI) assays. RESULTS: The investigation revealed that the seroprevalence of avian influenza H5 was as following: Ciconiiformes 2.6%, Strigiformes 13.04%, Passeriformes 20%, Cuculiformes 21.74%, Gruiformes 0%, Columbiformes 0%, Charadriiformes 0% and Coraciiformes 0%. Statistical analyses showed that there was a significant difference of prevalence between the orders (P < 0.01). Specific avian influenza H5 antibodies were detected in 23 of 440 (5.23%) sera. Mean HI titer 23 positive sera against H5 were 5.4 log2. CONCLUSIONS: The results of the present survey indicated that the proportion of wild birds had previously infected AIV H5 at other times of the year. To our knowledge, this is the first seroprevalence report of avian influenza H5 infection in wild migratory birds in China' s southwestern Yunnan Province. The results of the present survey have significant public health concerns.


Subject(s)
Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Animals , Birds , China , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...