Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Nanobioscience ; 22(1): 45-51, 2023 01.
Article in English | MEDLINE | ID: mdl-35130165

ABSTRACT

Long-range surface plasmon resonance (LRSPR) sensors have been extensively studied by virtue of their extremely narrow full width at half maxima (FWHM) characteristics, but their low sensitivity remains an important factor limiting the figure of merit (FOM), making the sensors have difficulties in detecting small refractive index changes accurately. To address this problem, this paper proposes and demonstrates a low dimensional nanostructure (Au nanospheres, WS2) assisted LRSPR sensor to achieve an effective enhancement of the sensor interfaced electric field and thus improve the sensitivity. The performance parameters of the two sensors are compared with the LRSPR sensor by finite element method analysis, and the results showed that the assistance of the low dimensional nanostructure has a positive effect on the sensor. The first refractive index sensing experiment of the WS2-assisted LRSPR sensor was realized with a 25.47% increase in sensitivity and a 7.13% increase in FOM simultaneously, and the Au nanospheres-assisted LRSPR sensor with a 29.23% increase in sensitivity and a 15.95% increase in FOM simultaneously. The introduction of low dimensional nanostructures provides a flexible and effective means of sensitization for LRSPR sensors, making the plasmon resonance sensors combine high sensitivity, narrow FWHM and high FOM, which have promising applications in biochemical sensing.


Subject(s)
Nanostructures , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Refractometry
2.
Nanoscale ; 14(16): 6144-6151, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388826

ABSTRACT

Due to the natural accumulation of radiation losses arising from the localization and random arrangement of nanoparticles, the figure of merit (FOM) of localized surface plasmon resonance (LSPR) sensors is usually very low (the value is usually less than 5 RIU-1). However, radiation losses of individual particles will be offset by adjusting the phase of the scattered field which is dependent on the structure parameters of arrays. Based on this, a two-dimensional periodic crescent nanoarray-based surface lattice resonance (SLR) sensor with a high FOM is proposed in this work. Some significant results have been obtained by mode field analysis and adjustment of structural parameters. On the one hand, the line-shape of the SLR spectrum is divided into a Fano-like line and a separate line. And the former usually has an FOM of 101 magnitude while the latter has an FOM of 103 magnitude. On the other hand, the relative size of the excitation wavelengths between SLR and LSPR is also vital. The FOM is higher but resonance depth decreases faster when the relative size increases. In this work, a full width at half-maximum (FWHM) of less than 0.5 nm and FOM of more than 1000 RIU-1 (the quality factor is more than 3000) are achieved by the proposed crescent nanoarrays. In addition, this structure demonstrates that plasmonic nanoarray-based SLR has enormous potential in trace substance detection.

3.
Nanoscale ; 14(3): 564-591, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34940766

ABSTRACT

The surface plasmon resonance (SPR) phenomenon is of wide interest due to its sensitivity to changes in surface refractive index for the label-free, highly sensitive and rapid detection of biomarkers. This paper reviews research progress on SPR biosensors modified with different substrate structures and surface materials, surface plasmon resonance imaging (SPRI), and SPR-enhanced electrochemiluminescent (ECL) biosensors for applications in biosensing in the last five years. This paper focuses on the research on the application of the SPR phenomenon in the field of bio-detection, reviews the sensing characteristics of SPR biosensors with substrate structures of prisms, gratings, and optical fibers, and summarizes and analyzes the sensitivity and interference resistance of SPR sensors with surface modification of different materials (high-refractive index dielectric films, metallic micro- and nanostructures, and surface antifouling materials). Considering that imaging is an important tool for biomedical detection, this paper reviews the research progress on SPRI technology in the field of biomedical detection. In addition, this paper also reviews the research progress on SPR-enhanced ECL biosensors in the field of biosensing. Finally, this paper provides an outlook on the development trends of biosensing technology in terms of portable high-precision SPR sensors, reduction of self-loss of thin film materials, optimization of image processing techniques and simplification of electrode modification for ECL sensors.


Subject(s)
Biosensing Techniques , Nanostructures , Surface Plasmon Resonance
4.
Appl Opt ; 58(23): 6329-6334, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31503778

ABSTRACT

A type of hollow gold nanoparticle (HGNP)-modified fiber optic long-range surface plasmon resonance (LRSPR) sensor with sensing self-reference is proposed and demonstrated. HGNPs have a stronger plasmonic field compared to solid GNPs because of the coupling between the inner and outer walls of HGNPs. The intense near-field electronic coupling between long-range surface plasmon polaritons associated with the LRSPR gold layer and localized surface plasmon polaritons of HGNPs leads to localized electromagnetic-field enhancement and LRSPR response signal amplification. Therefore, the HGNP-modified LRSPR sensor possesses a more excellent sensing property compared with the unmodified LRSPR sensor. The long-range resonance dip in the transmission spectrum is shown to shift in response to ambient refractivity change, and the characteristic absorption peak is fixed, allowing to regard it as a reference to improve detection accuracy of the sensors. The mode-field distribution of the sensors is simulated by using the finite element method, and the simulation results show that the electric-field intensity on the HGNP surface is significantly enhanced compared with that of the gold layer surface of the unmodified LRSPR sensor. 1874.79 nm/RIU improvement in sensitivity, 1.42 times improvement in figure of merit (FOM), and approximately 50% reduction in limit of detection (LOD) are achieved for the refractivity measurement of a low-concentration biological solution with the employment of HGNPs in LRSPR sensing experiments. The HGNP-modified LRSPR sensor proposed in this paper has high detection accuracy and FOM and low LOD, and can realize remote real-time online monitoring. Therefore, it has important research value and broad application prospects in the field of biochemical detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...