Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
PeerJ ; 12: e17461, 2024.
Article in English | MEDLINE | ID: mdl-38952992

ABSTRACT

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Subject(s)
Chromium , Edible Grain , Rhizosphere , Soil Microbiology , Soil Pollutants , Chromium/toxicity , Chromium/adverse effects , Chromium/metabolism , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Edible Grain/microbiology , Stress, Physiological/drug effects , Fungi/drug effects , Fungi/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism
3.
Front Oncol ; 14: 1336106, 2024.
Article in English | MEDLINE | ID: mdl-38962268

ABSTRACT

Objective: The escape from T cell-mediated immune surveillance is an important cause of death for patients with acute myeloid leukemia (AML). This study aims to identify clonal heterogeneity in leukemia progenitor cells and explore molecular or signaling pathways associated with AML immune escape. Methods: Single-cell RNA sequencing (scRNA-seq) was performed to identified AML-related cellular subsets, and intercellular communication was analyzed to investigate molecular mechanisms associated with AML immune escape. Bulk RNA sequencing (RNA-seq) was performed to screen differentially expressed genes (DEGs) related to hematopoietic stem cell progenitors (HSC-Prog) in AML, and critical ore signaling pathways and hub genes were found by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mRNA level of the hub gene was verified using quantitative real-time PCR (qRT-PCR) and the protein level of human leukocyte antigen A (HLA-A) using enzyme-linked immuno sorbent assay (ELISA). Results: scRNA-seq analysis revealed a large heterogeneity of HSC-Prog across samples, and the intercellular communication analysis indicated a strong association between HSC-Prog and CD8+-T cells, and HSC-Prog also had an association with HLA-A. Transcriptome analysis identified 1748 DEGs, enrichment analysis results showed that non-classical wnt signaling pathway was associated with AML, and 4 pathway-related genes (RHOA, RYK, CSNK1D, NLK) were obtained. After qRT-PCR and ELISA validation, hub genes and HLA-A were found to be down-regulated in AML and up-regulated after activation of the non-classical Wnt signaling pathway. Conclusion: In this study, clonal heterogeneity of HSC-Prog cells in AML was identified, non-classical wnt signaling pathways associated with AML were identified, and it was verified that HLA-A could be upregulated by activation of non-classical wnt signaling, thereby increasing antigen presentation.

4.
J Clin Immunol ; 44(7): 152, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896258

ABSTRACT

A boy with primary immunodeficiency, caused by a tyrosine kinase 2 (TYK2) mutation, presented with immune defects and a lifelong history of severe infections. Our aim was to determine whether allogeneic hematopoietic stem cell transplantation (HSCT) could restore the patient's immune defenses and reduce susceptibility to infection. In the absence of a suitable HLA-matched blood relative to act as a donor, the patient received an allogeneic HSCT from unrelated donors. The patient's clinical data were analyzed in the Children's Hospital of Chongqing Medical University (Chongqing, China) before transplantation and during the 4-year follow-up period using a combination of western blotting (e.g., TYK2 and STAT levels), qRT-PCR (e.g., T cell receptor rearrangement excision circles, kappa deletion element recombination circles, and TYK2 transcript levels), and flow cytometry (e.g., lymphocyte subpopulations and CD107α secretion). We found that HSCT significantly reduced the incidence of severe infections, restored normal TKY2 levels, and reversed defects such as impaired JAK/STAT signaling in response to interferon-α or interleukin-10 treatment. Although the patient did not develop acute graft-versus-host disease (GVHD) after transplantation, he did experience chronic GVHD symptoms in a number of organs, which were effectively managed. Our findings suggest that HSCT is a feasible strategy for reconstituting the immune system in TYK2-deficient patients; however, the factors associated with GVHD and autoimmune thyroiditis development in TYK2-deficient patients undergoing HSCT warrant further investigation.


Subject(s)
Hematopoietic Stem Cell Transplantation , TYK2 Kinase , Transplantation, Homologous , Unrelated Donors , Humans , Male , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immune Reconstitution , Immunologic Deficiency Syndromes/therapy , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/genetics , Mutation , TYK2 Kinase/genetics , TYK2 Kinase/deficiency , Infant
5.
Biochem Biophys Res Commun ; 726: 150274, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38924882

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.

6.
J Clin Immunol ; 44(6): 137, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805163

ABSTRACT

The pre BCR complex plays a crucial role in B cell production, and its successful expression marks the B cell differentiation from the pro-B to pre-B. The CD79a and CD79b mutations, encoding Igα and Igß respectively, have been identified as the cause of autosomal recessive agammaglobulinemia (ARA). Here, we present a case of a patient with a homozygous CD79a mutation, exhibiting recurrent respiratory infections, diarrhea, growth and development delay, unique facial abnormalities and microcephaly, as well as neurological symptoms including tethered spinal cord, sacral canal cyst, and chronic enteroviral E18 meningitis. Complete blockade of the early B cell development in the bone marrow of the patient results in the absence of peripheral circulating mature B cells. Whole exome sequencing revealed a Loss of Heterozygosity (LOH) of approximately 19.20Mb containing CD79a on chromosome 19 in the patient. This is the first case of a homozygous CD79a mutation caused by segmental uniparental diploid (UPD). Another key outcome of this study is the effective management of long-term chronic enteroviral meningitis using a combination of intravenous immunoglobulin (IVIG) and fluoxetine. This approach offers compelling evidence of fluoxetine's utility in treating enteroviral meningitis, particularly in immunocompromised patients.


Subject(s)
Agammaglobulinemia , Chromosomes, Human, Pair 19 , Fluoxetine , Uniparental Disomy , Humans , Fluoxetine/therapeutic use , Chromosomes, Human, Pair 19/genetics , Agammaglobulinemia/genetics , Agammaglobulinemia/drug therapy , CD79 Antigens/genetics , Male , Enterovirus Infections/drug therapy , Enterovirus Infections/genetics , Mutation/genetics , Immunoglobulins, Intravenous/therapeutic use , Female
7.
World J Pediatr ; 20(5): 444-450, 2024 05.
Article in English | MEDLINE | ID: mdl-38733460

ABSTRACT

BACKGROUND: ELF4 deficiency has been recently recognized as a novel disorder within the spectrum of inborn errors of immunity (IEIs), specifically categorized as a "disease of immune dysregulation." Cases of this condition, reported by our team and others, are very limited worldwide. As such, our current knowledge of this new disease remains preliminary. This review aims to provide a brief overview of the clinical manifestations, pathogenesis, and treatment strategies for this novel IEI. DATA SOURCES: A comprehensive review was conducted after an extensive literature search in the PubMed/Medline database and websites concerning transcriptional factor ELF4 and reports concerning patients with ELF4 deficiency. Our search strategy was "ELF4 OR ETS-related transcription factor Elf-4 OR EL4-like factor 4 OR myeloid Elf-1-like factor" as of the time of manuscript submission. RESULTS: The current signature manifestations of ELF4 deficiency disorder are recurrent and prolonged oral ulcer, abdominal pain, and diarrhea in pediatric males. In some cases, immunodeficiency and autoimmunity can also be prominent. Targeted Sanger sequencing or whole exome sequencing can be used to detect variation in ELF4 gene. Western blotting for ELF4 expression of the patient's cells can confirm the pathogenic effect of the variant. To fully confirm the pathogenicity of the variant, further functional test is strongly advised. Glucocorticoid and biologics are the mainstream management of ELF4 deficiency disorder. CONCLUSIONS: Pediatric males presenting with recurring ulcerations in digestive tract epithelium with or without recurrent fever should be suspected of DEX. When atypical presentations are prominent, variations in ELF4 gene should be carefully evaluated functionally due to the complex nature of ELF4 function. Experience of treating DEX includes use of glucocorticoid and biologics and more precise treatment needs more patients to identify and further mechanistic study.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , Transcription Factors/immunology , Immune System Diseases/genetics
8.
Int J Rheum Dis ; 27(5): e15165, 2024 May.
Article in English | MEDLINE | ID: mdl-38769820

ABSTRACT

OBJECTIVE: To compare the clinical efficacy of febuxostat combined with a low-purine diet versus allopurinol combined with a low-purine diet in the treatment of gout. METHODS: In this prospective controlled trial, 98 gout patients admitted to our hospital from February 2021 to December 2022 were enrolled as study subjects. Patients were randomly assigned to the study group (febuxostat combined with a low-purine diet) and the control group (allopurinol combined with a low-purine diet), with 49 patients in each group. The therapeutic effect was evaluated based on joint function and serum uric acid levels after treatment, and classified into three levels: markedly effective, effective, and ineffective. The levels of inflammatory factors, including tumor necrosis factor-a (TNF-a), cytokine interleukin-1beta (IL-1ß), and interleukin (IL)-18 (IL-18), were collected. The Numeric Rating Scale (NRS) was used to assess the degree of pain in patients. Clinical indicators before and 6 months after treatment were compared between the two groups. RESULTS: There was no statistically significant difference in age and gender between the two groups. After 6 months of treatment, the effective rate in the study group (48 cases, 97.96%) was higher than that in the control group (42 cases, 85.71%), with a statistically significant difference (p = .027). At the same time, the study group had significantly lower levels of serum uric acid (162.39 µmol/L ± 17.23 µmol/L vs. S198.32 µmol/L ± 18.34 µmol/L, p < .001), creatinine (87.39 mmol/L ± 9.76 mmol/L vs. 92.18 mmol/L ± 9.27 mmol/L, p = .014), total cholesterol (3.65 mmol/L ± 0.65 mmol/L vs. 4.76 mmol/L ± 0.73 mmol/L, p < .001), and triglycerides (1.76 mmol/L ± 0.32 mmol/L vs. 2.28 mmol/L ± 0.41 mmol/L, p < .001) compared to the control group, with statistically significant differences (p < .05). After treatment, the levels of inflammatory factors and degree of pain in the study group were significantly lower than those in the control group (all p < .05). During the treatment process, the incidence of adverse reactions in the study group (2 cases, 4.08%) was lower than that in the control group (9 cases, 18.37%), with a statistically significant difference (p = .025). CONCLUSION: Febuxostat combined with a low-purine diet can reduce inflammatory factors and alleviate the degree of pain in gout patients, significantly improving their clinical symptoms.


Subject(s)
Allopurinol , Febuxostat , Gout Suppressants , Gout , Uric Acid , Humans , Febuxostat/therapeutic use , Febuxostat/adverse effects , Male , Female , Middle Aged , Allopurinol/therapeutic use , Gout/drug therapy , Gout/blood , Gout/diagnosis , Gout Suppressants/therapeutic use , Gout Suppressants/adverse effects , Prospective Studies , Treatment Outcome , Uric Acid/blood , Aged , Purines/therapeutic use , Biomarkers/blood , Combined Modality Therapy , Time Factors , Adult , Inflammation Mediators/blood
9.
J Clin Immunol ; 44(5): 117, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758229

ABSTRACT

AIOLOS, a vital member of the IKAROS protein family, plays a significant role in lymphocyte development and function through DNA binding and protein-protein interactions. Mutations in the IKZF3 gene, which encodes AIOLOS, lead to a rare combined immunodeficiency often linked with infections and malignancy. In this study, we evaluated a 1-year-4-month-old female patient presenting with recurrent infections, diarrhea, and failure to thrive. Laboratory investigations revealed decreased T lymphocyte and immunoglobulin levels. Through whole-exome and Sanger sequencing, we discovered a de novo mutation in IKZF3 (NM_012481; exon 5 c.571G > C, p.Gly191Arg), corresponding to the third DNA-binding zinc finger region of the encoded protein AIOLOS. Notably, the patient with the AIOLOS G191R mutation showed reduced recent thymic emigrants in naïve CD4+T cells compared to healthy counterparts of the same age, while maintaining normal levels of Th1, Th2, Th17, Treg, and Tfh cells. This mutation also resulted in decreased switched memory B cells and lower CD23 and IgM expression. In vitro studies revealed that AIOLOS G191R does not impact the expression of AIOLOS but compromises its stability, DNA binding and pericentromeric targeting. Furthermore, AIOLOS G191R demonstrated a dominant-negative effect over the wild-type protein. This case represents the first reported instance of a mutation in the third DNA-binding zinc finger region of AIOLOS highlighting its pivotal role in immune cell functionality.


Subject(s)
Ikaros Transcription Factor , Mutation , Humans , Ikaros Transcription Factor/genetics , Female , Mutation/genetics , Infant , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/diagnosis , Exome Sequencing , B-Lymphocytes/immunology
10.
J Clin Immunol ; 44(5): 124, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758476

ABSTRACT

PURPOSES: STAT1 is a transduction and transcriptional regulator that functions within the classical JAK/STAT pathway. In addition to chronic mucocutaneous candidiasis, bacterial infections are a common occurrence in patients with STAT1 gain-of-function (GOF) mutations. These patients often exhibit skewing of B cell subsets; however, the impact of STAT1-GOF mutations on B cell-mediated humoral immunity remains largely unexplored. It is also unclear whether these patients with IgG within normal range require regular intravenous immunoglobulin (IVIG) therapy. METHODS: Eleven patients (harboring nine different STAT1-GOF mutations) were enrolled. Reporter assays and immunoblot analyses were performed to confirm STAT1 mutations. Flow cytometry, deep sequencing, ELISA, and ELISpot were conducted to assess the impact of STAT1-GOF on humoral immunity. RESULTS: All patients exhibited increased levels of phospho-STAT1 and total STAT1 protein, with two patients carrying novel mutations. In vitro assays showed that these two novel mutations were GOF mutations. Three patients with normal total IgG levels received regular IVIG infusions, resulting in effective control of bacterial infections. Four cases showed impaired affinity and specificity of pertussis toxin-specific antibodies, accompanied by reduced generation of class-switched memory B cells. Patients also had a disrupted immunoglobulin heavy chain (IGH) repertoire, coupled with a marked reduction in the somatic hypermutation frequency of switched Ig transcripts. CONCLUSION: STAT1-GOF mutations disrupt B cell compartments and skew IGH characteristics, resulting in impaired affinity and antigen-specificity of antibodies and recurrent bacterial infections. Regular IVIG therapy can control these infections in patients, even those with normal total IgG levels.


Subject(s)
B-Lymphocytes , Bacterial Infections , Gain of Function Mutation , Immunoglobulins, Intravenous , STAT1 Transcription Factor , Humans , STAT1 Transcription Factor/genetics , Bacterial Infections/immunology , Bacterial Infections/genetics , Female , Male , Child , Immunoglobulins, Intravenous/therapeutic use , B-Lymphocytes/immunology , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Child, Preschool , Adolescent , Young Adult , Immunity, Humoral
11.
Sci Total Environ ; 932: 172916, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697544

ABSTRACT

The details of how soil microorganisms contribute to stable soil organic carbon pools are a pressing knowledge gap with direct implications for soil health and climate mitigation. It is now recognized that microbial necromass contributes substantially to the formation of stable soil carbon. However, the quantification of necromass in soils has largely been limited to model molecules such as aminosugar biomarkers. The abundance and chemical composition of other persistent microbial residues remain unresolved, particularly concerning how these pools may vary with microbial community structure, soil texture, and management practices. Here we use yearlong soil incubation experiments with an isotopic tracer to quantify the composition of persistent residues derived from microbial communities inhabiting sand or silt dominated soil with annual (corn) or perennial (switchgrass) monocultures. Persistent microbial residues were recovered in diverse soil biomolecular pools including metabolites, proteins, lipids, and mineral-associated organic matter (MAOM). The relative abundances of microbial contributions to necromass pools were consistent across cropping systems and soil textures. The greatest residue accumulation was not recovered in MAOM but in the light density fraction of soil debris that persisted after extraction by chemical fractionation using organic solvents. Necromass abundance was positively correlated with microbial biomass abundance and revealed a possible role of cell wall morphology in enhancing microbial carbon persistence; while gram-negative bacteria accounted for the greatest contribution to microbial-derived carbon by mass at one year, residues from gram-positive Actinobacteria and Firmicutes showed greater durability. Together these results offer a quantitative assessment of the relative importance of diverse molecular classes for generating durable soil carbon.


Subject(s)
Carbon , Soil Microbiology , Soil , Soil/chemistry , Carbon/analysis , Microbiota , Environmental Monitoring
12.
Pediatr Allergy Immunol ; 35(5): e14136, 2024 May.
Article in English | MEDLINE | ID: mdl-38747707

ABSTRACT

BACKGROUND: Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) is caused by UNC13D variants. The clinical manifestations of FHL3 are highly diverse and complex. Some patients exhibit atypical or incomplete phenotypes, making accurate diagnosis difficult. Our study aimed to broaden the understanding of the atypical FHL3 clinical spectrum. METHODS: In our study, we analyzed in detail the clinical features of four Chinese patients with UNC13D variants. Additionally, we conducted a comprehensive review of the existing literature on previously reported atypical manifestations and summarized the findings. RESULTS: Two of our patients presented with muscle involvement, while the other two had hematological involvement; none of them met the diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). However, protein expression and functional analysis ultimately confirmed diagnostic criteria for FHL3 in all patients. From the literature we reviewed, many atypical FHL3 patients had neurological involvement, especially isolated neurological manifestations. At the same time, arthritis and hypogammaglobulinemia were also prone to occur. CONCLUSION: Our study highlights that the expression of the Munc13-4 protein may not fully indicate the pathogenicity of UNC13D variants, whereas CD107a analysis could be more sensitive for disease diagnosis. These findings contribute to a broader understanding of the FHL3 clinical spectrum and may offer new insights into the underlying pathogenesis of UNC13D variants. It is crucial to prioritize the timely and accurate diagnosis of atypical patients, as they may often be overlooked among individuals with rheumatic or hematological diseases.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Membrane Proteins , Child , Female , Humans , Infant , Male , China/epidemiology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Membrane Proteins/genetics , Mutation , Phenotype , Adolescent
13.
Metabolism ; 155: 155913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609039

ABSTRACT

Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.


Subject(s)
Fibrosis , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/pathology , Animals , Kidney/pathology , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/therapy , Autophagy/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
14.
J Appl Clin Med Phys ; 25(5): e14337, 2024 May.
Article in English | MEDLINE | ID: mdl-38576183

ABSTRACT

PURPOSE: The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS: The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS: HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS: HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Cone-Beam Computed Tomography/methods , Particle Accelerators/instrumentation , Humans , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Quality Assurance, Health Care/standards , Radiographic Image Interpretation, Computer-Assisted/methods
15.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587080

ABSTRACT

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Subject(s)
Antibodies, Neutralizing , Nasal Sprays , Animals , Cricetinae , Humans , China , Trachea , Healthy Volunteers
16.
Dalton Trans ; 53(14): 6224-6233, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488116

ABSTRACT

Density functional theory plus Hubbard U (DFT+U) methodology was used to calculate the structures and energetic landscapes of CeSiO4, including its stetindite and scheelite phases from ambient pressure to ∼24 GPa. To ensure accurate simulations of the high-pressure structures, assessments of strain-stress methods and stress-strain methods were conducted in prior, with the former found to have a better agreement with the experimental result. From DFT calculations the equation of states (EOS) of both stetindite and scheelite were further obtained, with the fitted bulk moduli being 182(2) GPa and 190.0(12) GPa, respectively. These results were found to be consistent with the experimental values of 177(5) GPa and 222(40) GPa. Furthermore, the calculated energetics suggest that the stetindite structure is more thermodynamically stable than the scheelite structure at a pressure lower than 8.35 GPa. However, the stetindite → scheelite phase transition was observed experimentally at a much higher pressure of ∼15 GPa. A further phonon spectra investigation by the density functional perturbation theory (DFPT) indicated the Eg1 mode is being softened with pressure and becomes imaginary after 12 GPa, which is a sign of the lattice instability. Consequently, it was concluded that the stetindite → scheelite transition is predominantly initiated by the lattice instability under high-pressure.

17.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38353705

ABSTRACT

The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.


Subject(s)
Ion Channels , Lupus Erythematosus, Systemic , Infant, Newborn , Adult , Child , Humans , Animals , Mice , Lymphocyte Activation , Antibodies, Viral , B-Lymphocytes , Cations , TRPV Cation Channels/genetics
18.
Exp Ther Med ; 27(3): 97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356676

ABSTRACT

Limb-girdle muscular dystrophies are a group of extremely heterogenous neuromuscular disorders that manifest with gradual and progressive weakness of both proximal and distal muscles. Autosomal dominant limb-girdle muscular dystrophy (LGMDD4) or calpainopathy is a very rare form of myopathy characterized by weakness and atrophy of both proximal and distal muscles with a variable age of onset. LGMDD4 is caused by germline heterozygous mutations of the calpain 3 (CAPN3) gene. Patients with LGMDD4 often show extreme phenotypic heterogeneity; however, most patients present with gait difficulties, increased levels of serum creatine kinase, myalgia and back pain. In the present study, a 16-year-old male patient, clinically diagnosed with LGMDD4, was investigated. The proband had been suffering from weakness and atrophy of both of their proximal and distal muscles, and had difficulty walking and standing independently. The serum creatine kinase levels (4,754 IU/l; normal, 35-232 IU/l) of the patient were markedly elevated. The younger sister and mother of the proband were also clinically diagnosed with LGMDD4, while the father was phenotypically normal. Whole exome sequencing identified a heterozygous novel splice-site (c.2440-1G>A) mutation in intron 23 of the CAPN3 gene in the proband. Sanger sequencing confirmed that this mutation was also present in both the younger sister and mother of the proband, but the father was not a carrier of this mutation. This splice-site (c.2440-1G>A) mutation causes aberrant splicing of CAPN3 mRNA, leading to the skipping of the last exon (exon 24) of CAPN3 mRNA and resulting in the removal of eight amino acids from the C-terminal of domain IV of the CAPN3 protein. Hence, this splice site mutation causes the formation of a truncated CAPN3 protein (p.Trp814*) of 813 amino acids instead of the wild-type CAPN3 protein that consists of 821 amino acids. This mutation causes partial loss of domain IV (PEF domain) in the CAPN3 protein, which is involved in calcium binding and homodimerization; therefore, this is a loss-of-function mutation. Relative expression of the mutated CAPN3 mRNA was reduced in comparison with the wild-type CAPN3 mRNA in the proband, and their younger sister and mother. This mutation was also not present in 100 normal healthy control individuals of the same ethnicity. The present study reported the first case of CAPN3 gene-associated LGMDD4 in the Chinese population.

19.
Mar Pollut Bull ; 199: 116008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171162

ABSTRACT

We employed a validated method to assess the seasonal variation and distribution of caffeine in the Bohai and Yellow Seas, as well as in Yantai urban estuaries and offshore region in northern China. Caffeine concentrations were highest during the summer in the Yellow Sea (1436.4 ng/L) and lowest in the Yantai urban offshore region during the spring and autumn and in the Yantai urban estuarine area and Bohai Sea during the winter (0.1 ng/L). There was significant variation in maximum caffeine levels among seasons across all regions examined, reaching a difference of 5980.5 times at the same sampling site between summer and winter. The caffeine concentration in the Yantai offshore region was significantly higher than in the Bohai and Yellow Seas. This study is the first investigation of seasonal fluctuations in the pollution levels of neurotoxic substances in the northern seas of China.


Subject(s)
Caffeine , Estuaries , Seasons , Oceans and Seas , Climate , China , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...