Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Front Aging Neurosci ; 16: 1335122, 2024.
Article in English | MEDLINE | ID: mdl-38715962

ABSTRACT

The expanding geriatric population, whose predisposition toward disabling morbidities and age-related diseases (ARD) is well-documented, has become a paramount social issue, exerting an onerous burden on both the healthcare industry and wider society. ARD manifest as the progressive deterioration of bodily tissues and organs, eventually resulting in the failure of these vital components. At present, no efficacious measures exist to hinder the onset of ARD. Copper, an essential trace element, is involved in a wide range of physiological processes across different cell types. In recent research, a novel variant of copper-dependent cell death, termed cuproptosis, has been identified. This mode of cellular demise stands apart from previously recognized types of cell death. Cuproptosis occurs when copper binds with acyl-CoA synthetase in the tricarboxylic acid (TCA) cycle, resulting in protein aggregation and protein toxicity stress, ultimately leading to cell death. In this paper, we provide a concise overview of the current understanding concerning the metabolism of copper, copper-related diseases, the hallmarks of copper toxicity, and the mechanisms that regulate copper toxicity. Additionally, we discuss the implications of cuproptosis mutations in the development of ARD, as well as the potential for targeting cuproptosis as a treatment for ARD.

2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732958

ABSTRACT

Ensuring source location privacy is crucial for the security of underwater acoustic sensor networks amid the growing use of marine environmental monitoring. However, the traditional source location privacy scheme overlooks multi-attacker cooperation strategies and also has the problem of high communication overhead. This paper addresses the aforementioned limitations by proposing an underwater source location privacy protection scheme based on game theory under the scenario of multiple cooperating attackers (SLP-MACGT). First, a transformation method of a virtual coordinate system is proposed to conceal the real position of nodes to a certain extent. Second, through using the relay node selection strategy, the diversity of transmission paths is increased, passive attacks by adversaries are resisted, and the privacy of source nodes is protected. Additionally, a secure data transmission technique utilizing fountain codes is employed to resist active attacks by adversaries, ensuring data integrity and enhancing data transmission stability. Finally, Nash equilibrium could be achieved after the multi-round evolutionary game theory of source node and multiple attackers adopting their respective strategies. Simulation experiments and performance evaluation verify the effectiveness and reliability of SLP-MACGT regarding aspects of the packet forwarding success rate, security time, delay and energy consumption: the packet delivery rate average increases by 30%, security time is extended by at least 85%, and the delay is reduced by at least 90% compared with SSLP, PP-LSPP, and MRGSLP.

3.
Angew Chem Int Ed Engl ; : e202405213, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637914

ABSTRACT

Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The Copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.

4.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38681990

ABSTRACT

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Subject(s)
Autophagy , Cell Proliferation , Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , Reactive Oxygen Species , Taurine , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Autophagy/drug effects , Taurine/pharmacology , Ferroptosis/drug effects , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Becaplermin/pharmacology , Becaplermin/metabolism , Cell Line , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cell Survival/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Signal Transduction/drug effects
5.
Biophys J ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38615192

ABSTRACT

α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is involved in the pathogenesis of Parkinson's disease. Point mutations and multiplications of α-synuclein (A30P and A53T) are correlated with early-onset Parkinson's disease characterized by rapid progression and poor prognosis. Currently, the clinical identification of SNCA variants, especially disease-related A30P and A53T mutants, remains challenging and also time consuming. This study aimed to develop a novel label-free detection method for distinguishing the SNCA mutants using transmission terahertz (THz) time-domain spectroscopy. The protein was spin-coated onto the quartz to form a thin film, which was measured using THz time-domain spectroscopy. The spectral characteristics of THz broadband pulse waves of α-synuclein protein variants (SNCA wild type, A30P, and A53T) at different frequencies were analyzed via Fourier transform. The amplitude A intensity (AWT, AA30P, and AA53T) and peak occurrence time in THz time-domain spectroscopy sensitively distinguished the three protein variants. The phase φ difference in THz frequency domain followed the trend of φWT > φA30P > φA53T. There was a significant difference in THz frequency amplitude A' corresponding to the frequency ranging from 0.4 to 0.66 THz (A'A53T > A'A30P > A'WT). At a frequency of 0.4-0.6 THz, the transmission T of THz waves distinguished three variants (TA53T > TA30P > TWT), whereas there was no difference in the transmission T at 0.66 THz. The SNCA wild-type protein and two mutant variants (A30P and A53T) had distinct characteristic fingerprint spectra on THz time-domain spectroscopy. This novel label-free detection method has great potential for the differential diagnosis of Parkinson's disease subtypes.

6.
ACS Appl Mater Interfaces ; 16(17): 22504-22511, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634758

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs), featuring a large surface area and 1D pore structure, serve as promising scaffolds for anchoring functional guest compounds, which can significantly enhance their performance and thus expand their potential applications. Postsynthetic strategy for COFs functionalization is versatile but challenging because of their tedious procedure with high time and energy consumption, generation of excess reaction waste, and damage to COF crystallinity. We report in this work a general strategy for the synthesis of inorganic nanocompound-functionalized COF composites in a one-pot way. Specifically, a high-crystallinity nanoscale molybdenum compound is successfully introduced into a COF skeleton with high dispersion in situ during the crystallization process of the COF induced by gamma ray radiation under ambient conditions. The obtained COF@Mo composites exhibit remarkable sorption performance for methylene blue and many other organic dyes in aqueous solution with the advantages of ultrarapid uptake dynamics and high removal efficiency.

7.
Pharm Res ; 41(4): 609-622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383936

ABSTRACT

PURPOSE: The physiologically based pharmacokinetic (PBPK) modeling has received increasing attention owing to its excellent predictive abilities. However, there has been no bibliometric analysis about PBPK modeling. This research aimed to summarize the research development and hot points in PBPK model utilization overall through bibliometric analysis. METHODS: We searched for publications related to the PBPK modeling from 1999 to 2023 in the Web of Science Core Collection (WoSCC) database. The Microsoft Office Excel, CiteSpace and VOSviewers were used to perform the analyses. RESULTS: A total of 4,649 records from 1999 to 2023 were identified, and the largest number of publications focused in the period 2018-2023. The United States was the leading country, and the Environmental Protection Agency (EPA) was the leading institution. The journal Drug Metabolism and Disposition published and co-cited the most articles. Drug-drug interactions, special populations, and new drug development are the main topics in this research field. CONCLUSION: We first visualize the research landscape and hotspots of the PBPK modeling through bibliometric methods. Our study provides a better understanding for researchers, especially beginners about the dynamization of PBPK modeling and presents the relevant trend in the future.


Subject(s)
Bibliometrics , Drug Development , Databases, Factual
8.
Sensors (Basel) ; 24(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38339576

ABSTRACT

Ship detection is vital for maritime safety and vessel monitoring, but challenges like false and missed detections persist, particularly in complex backgrounds, multiple scales, and adverse weather conditions. This paper presents YOLO-Vessel, a ship detection model built upon YOLOv7, which incorporates several innovations to improve its performance. First, we devised a novel backbone network structure called Efficient Layer Aggregation Networks and Omni-Dimensional Dynamic Convolution (ELAN-ODConv). This architecture effectively addresses the complex background interference commonly encountered in maritime ship images, thereby improving the model's feature extraction capabilities. Additionally, we introduce the space-to-depth structure in the head network, which can solve the problem of small ship targets in images that are difficult to detect. Furthermore, we introduced ASFFPredict, a predictive network structure addressing scale variation among ship types, bolstering multiscale ship target detection. Experimental results demonstrate YOLO-Vessel's effectiveness, achieving a 78.3% mean average precision (mAP), surpassing YOLOv7 by 2.3% and Faster R-CNN by 11.6%. It maintains real-time detection at 8.0 ms/frame, meeting real-time ship detection needs. Evaluation in adverse weather conditions confirms YOLO-Vessel's superiority in ship detection, offering a robust solution to maritime challenges and enhancing marine safety and vessel monitoring.

9.
Front Endocrinol (Lausanne) ; 15: 1355180, 2024.
Article in English | MEDLINE | ID: mdl-38419956

ABSTRACT

Background: Body mass index (BMI) and fasting plasma glucose (FPG) are known risk factors for type 2 diabetes mellitus (T2DM), but data on the prospective association of the combination of BMI and FPG with T2DM are limited. This study sought to characterize the association of the combination of BMI and FPG (ByG) with T2DM. Methods: The current study used the NAGALA database. We categorized participants by tertiles of ByG. The association of ByG with T2DM was expressed with hazard ratios (HRs) with 95% confidence intervals (CIs) after adjustment for potential risk factors. Results: During a median follow-up of 6.19 years in the normoglycemia cohort and 5.58 years in the prediabetes cohort, the incidence of T2DM was 0.75% and 7.79%, respectively. Following multivariable adjustments, there were stepwise increases in T2DM with increasing tertiles of ByG. After a similar multivariable adjustment, the risk of T2DM was 2.57 (95% CI 2.26 - 2.92), 1.97 (95% CI 1.53 - 2.54) and 1.50 (95% CI 1.30 - 1.74) for a per-SD change in ByG in all populations, the normoglycemia cohort and the prediabetes cohort, respectively. Conclusion: ByG was associated with an increased risk of T2DM in Japan. The result reinforced the importance of the combination of BMI and FPG in assessing T2DM risk.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Body Mass Index , Blood Glucose , Retrospective Studies , Japan/epidemiology , Fasting
10.
Protein Cell ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366188

ABSTRACT

The progressive degradation in the trabecular meshwork (TM) is related to age-related ocular diseases like primary open-angle glaucoma. However, the molecular basis and biological significance of the aging process in TM have not been fully elucidated. Here, we established a dynamic single-cell transcriptomic landscape of aged macaque TM, wherein we classified the outflow tissue into 12 cell subtypes and identified mitochondrial dysfunction as a prominent feature of TM aging. Furthermore, we divided TM cells into 13 clusters and performed an in- depth analysis on cluster 0, which had the highest aging score and the most significant changes in cell proportions between the two groups. Ultimately, we found that the APOE gene was an important differentially expressed gene in cluster 0 during the aging process, highlighting the close relationship between cell migration and extracellular matrix regulation, and TM function. Our work further demonstrated that silencing the APOE gene could increase migration and reduce apoptosis by releasing the inhibition on the PI3K-AKT pathway and downregulating the expression of extracellular matrix components, thereby increasing the aqueous outflow rate and maintaining intraocular pressure within the normal range. Our work provides valuable insights for future clinical diagnosis and treatment of glaucoma.

11.
Cell Rep Med ; 5(2): 101375, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38278146

ABSTRACT

Despite considerable efforts to identify human liver cancer genomic alterations that might unveil druggable targets, the systematic translation of multiomics data remains challenging. Here, we report success in long-term culture of 64 patient-derived hepatobiliary tumor organoids (PDHOs) from a Chinese population. A divergent response to 265 metabolism- and epigenetics-related chemicals and 36 anti-cancer drugs is observed. Integration of the whole genome, transcriptome, chromatin accessibility profiles, and drug sensitivity results of 64 clinically relevant drugs defines over 32,000 genome-drug interactions. RUNX1 promoter mutation is associated with an increase in chromatin accessibility and a concomitant gene expression increase, promoting a cluster of drugs preferentially sensitive in hepatobiliary tumors. These results not only provide an annotated PDHO biobank of human liver cancer but also suggest a systematic approach for obtaining a comprehensive understanding of the gene-regulatory network of liver cancer, advancing the applications of potential personalized medicine.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Humans , Pharmacogenetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Organoids/pathology , Chromatin/metabolism
12.
Environ Geochem Health ; 46(1): 26, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225519

ABSTRACT

Irrigation with treated livestock wastewater (TWW) is a promising strategy for reusing resources. However, TWW irrigation might introduce antibiotic resistant genes (ARGs) into the soil, posing environmental risks associated with antibiotic resistance. This study focuses on investigating the influence of irrigation amounts and duration on the fate of ARGs and identifies key factors driving their changes. The results showed that there were 13 ARGs in TWW, while only 5 ARGs were detected in irrigated soil. That is some introduced ARGs from TWW could not persistently exist in the soil. After 1-year irrigation, an increase in irrigation amount from 0.016 t/m2 to 0.048 t/m2 significantly enhanced the abundance of tetC by 29.81%, while ermB and sul2 decreased by 45.37% and 76.47%, respectively (p < 0.01). After 2-year irrigation, the abundance of tetC, ermB, ermF, dfrA1, and total ARGs significantly increased (p < 0.05) when the irrigation amount increased. The abundances of ARGs after 2-year irrigation were found to be 2.5-34.4 times higher than 1 year. Obviously, the irrigation years intensified the positive correlation between ARGs abundance and irrigation amount. TetC and ermF were the dominant genes resulting in the accumulation of ARGs. TWW irrigation increased the content of organic matter and total nitrogen in the soil, which affected microbial community structure. The changes of the potential host were the determining factors driving the ARGs abundance. Our study demonstrated that continuous TWW irrigation for 2 years led to a substantial accumulation of ARGs in soil.


Subject(s)
Soil , Wastewater , Animals , Soil/chemistry , Livestock , Farms , Anti-Bacterial Agents , Agricultural Irrigation/methods , Soil Microbiology , China
13.
Opt Lett ; 48(22): 6044-6047, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966785

ABSTRACT

Multilayer metasurfaces break the mirror symmetry along the path of light propagation, thereby increasing the potential for light manipulation. Herein, a paradigm is proposed that building a non-Hermitian bilayer metasurface, which is composed of two identical, orthogonally oriented, chiral J-shaped Au structures in each layer, allows exceptional points (EPs) to exist in full-space. Specifically, in the reflected half-space that adheres to mirror symmetry, the circularly polarized eigenstates coalesce at the EP, while in the transmission half-space, where mirror symmetry is broken, the linearly polarized eigenstates converge at the EP. By considering the intrinsic property of topologically protected 2π-phase accumulation encircling both EPs, we investigated full-space holography through using circularly polarized light (in reflection half-space) and linearly polarized light (in transmission half-space).

14.
BMC Pulm Med ; 23(1): 453, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986163

ABSTRACT

BACKGROUND: Previous studies have declared that baseline lymphocyte count is associated with COVID-19-related death. However, whether dynamic lymphocyte change over time affects prognosis in COVID-19 patients is unknown. This study aims to investigate the significance of lymphocyte count during the progression of the disease in COVID-19 patients. METHODS: The retrospective cohort study recruited COVID-19 patients at the First People's Hospital of Jiangxia District in Wuhan from January 7, 2020, to February 28, 2020. The demographics, medical histories, results of the blood routine test, and patients' outcomes were collected. We utilized a generalized additive mixed model to compare trends in lymphocyte count over time among survivors and non-survivors, with an adjustment for potential confounders. The statistical analysis used R software and EmpowerStats. Significance was determined at a P-value of less than 0.05 (two-sided). RESULTS: A total of 532 patients were included in the study. Overall, there were 29/532 in-hospital deaths (5.45%). Lymphocytes declined over time in the non-survivor group and increased in the survivor group in the first 10 days of hospitalization. Within 10 days after admission, lymphocyte count increased in the survivor group and decreased in the non-survivor group. The difference in lymphocyte counts between survivors and non-survivors increased by an average of 0.0732 × 109/L daily. After adjusting for several covariables, the increasing value remained at 0.0731 × 109/L per day. CONCLUSION: In the early stage, lymphocyte count can dynamically reflect the pathophysiological changes in COVID-19 patients. An early decrease in lymphocyte count is associated with mortality in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Retrospective Studies , SARS-CoV-2 , Lymphocyte Count , Lymphocytes , Prognosis
15.
Front Endocrinol (Lausanne) ; 14: 1180910, 2023.
Article in English | MEDLINE | ID: mdl-37810876

ABSTRACT

Background: Several studies have verified that a high baseline TG/HDL-C ratio is a risk factor for incident type 2 diabetes mellitus (T2DM). However, for low baseline TG/HDL-C levels, the findings were inconsistent with ours. In addition, the association between baseline TG/HDL-C ratio and the risk of incident T2DM in Japanese men with normal glycemic levels is unclear. As a result, our study further investigated the relationship between baseline TG/HDL-C and the risk of incident T2DM in Japanese men with normal glycemic levels. Methods: This was a secondary longitudinal cohort study. We selected 7,684 male participants between 2004 and 2015 from the NAGALA database. A standardized Cox regression model and two piecewise Cox regression models were used to explore the relationship between the baseline high-density lipoprotein cholesterol ratio (TG/HDL-C) and incident T2DM. Results: During a median follow-up of 2,282 days, 162 men developed incident T2DM. In the adjusted model, the baseline TG/HDL-C ratio was strongly associated with the risk of incident T2DM, and no dose-dependent positive association was observed between the baseline TG/HDL-C ratio and incidence of T2DM throughout the baseline TG/HDL-C quartiles. Two-piecewise linear regression analysis showed a U-shaped association between baseline TG/HDL-C ratio and incidence of incident T2DM. A baseline TG/HDL-C ratio below 1.188 was negatively associated with incident T2DM (H.R. = 0.105, 95% CI = 0.025, 0.451; P = 0.002). In contrast, a baseline TG/HDL-C ratio >1.188 was positively associated with incident T2DM (H.R. = 1.248, 95% CI = 1.113, 1.399; P<0.001). The best TG/HDL-C threshold for predicting incident T2DM was 1.8115 (area under the curve, 0.6837). Conclusion: A U-shaped relationship between baseline TG/HDL-C ratio and incident T2DM in Japanese men with normal glycemic levels was found.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Male , Diabetes Mellitus, Type 2/epidemiology , Triglycerides , Cholesterol, HDL , Longitudinal Studies , East Asian People , Cohort Studies
16.
Abdom Radiol (NY) ; 48(12): 3728-3745, 2023 12.
Article in English | MEDLINE | ID: mdl-37750923

ABSTRACT

OBJECTIVES: Parenchymal-sparing hepatectomy (PSH) is recommended in patients with colorectal liver metastases (CRLM). Based on the principle of PSH, to investigate the impact of anatomical resection (AR) and non-anatomic resection (NAR) on the outcome of CRLM and to evaluate the potential prognostic impact of three peritumoral imaging features. METHODS: Fifty-six patients who had abdominal gadoxetic acid-enhanced magnetic resonance imaging (MRI) before CRLM surgery were included in this retrospective research. Peritumoral early enhancement, peritumoral hypointensity on hepatobiliary phase (HBP), and biliary dilatation to the CRLM at MRI were evaluated. Survival estimates were calculated using the Kaplan-Meier method, and multivariate analysis was conducted to identify independent predictors of liver recurrence-free survival (LRFS), recurrence-free survival (RFS) and overall survival (OS). RESULTS: NAR had a lower 3-year LRFS compared with AR (36.6% vs. 78.6%, p = 0.012). No significant differences were found in 3-year RFS (34.1% vs. 41.7%) and OS (61.7% vs. 81.3%) (p > 0.05). In NAR group, peritumoral early enhancement was associated with poor LRFS (p = < 0.001, hazard ratio [HR] = 6.260; 95% confidence interval [CI], 2.322,16.876]) and poor RFS (p = 0.035, HR =2.516; 95% CI, 1.069,5.919). No independent predictors of CRLM were identified in the AR group. CONCLUSIONS: In patients with CRLM, peritumoral early enhancement was a predictor of LRFS and RFS after NAR according to the principle of PSH.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , Prognosis , Hepatectomy/methods , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology
17.
Sci China Life Sci ; 66(12): 2837-2850, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37610681

ABSTRACT

Primary open-angle glaucoma (POAG) is a prevalent cause of blindness worldwide, resulting in degeneration of retinal ganglion cells and permanent damage to the optic nerve. However, the underlying pathogenetic mechanisms of POAG are currently indistinct, and there has been no effective nonsurgical treatment regimen. The objective of this study is to identify novel biomarkers and potential therapeutic targets for POAG. The mRNA expression microarray datasets GSE27276 and GSE138125, as well as the single-cell high-throughput RNA sequencing (scRNA-seq) dataset GSE148371 were utilized to screen POAG-related differentially expressed genes (DEGs). Functional enrichment analyses, protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA) of the DEGs were performed. Subsequently, the hub genes were validated at a single-cell level, where trabecular cells were annotated, and the mRNA expression levels of target genes in different cell clusters were analyzed. Immunofluorescence and quantitative real-time PCR (qPCR) were performed for further validation. DEGs analysis identified 43 downregulated and 32 upregulated genes in POAG, which were mainly enriched in immune-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress. PPI networks showed that FN1 and DUSP1 were the central hub nodes, while GPX3 and VAV3 were screened out as hub genes through WGCNA and subsequently validated by qPCR. Finally, FN1, GPX3, and VAV3 were determined to be pivotal core genes via single-cell validation. The relevant biomarkers involved in the pathogenesis of POAG, may serve as potential therapeutic targets. Further studies are necessary to unveil the mechanisms underlying the expression variations of these genes in POAG.


Subject(s)
Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/therapy , Biomarkers , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Chem Sci ; 14(26): 7291-7303, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416705

ABSTRACT

Herein we report a cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O2 as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and tolerates a wide range of allenes, including 2,3-butadienoate, allenylphosphonate, and phenylallene, resulting in C-N axially chiral sultams with high enantio-, regio-, and position selectivities. The annulation with alkynes also exhibits excellent enantiocontrol (up to >99% ee) with a variety of functional aryl sulfonamides, and internal and terminal alkynes. Furthermore, electrochemical oxidative C-H/N-H annulation with alkynes is achieved in a simple undivided cell, demonstrating the versatility and robustness of the cobalt/Salox system. The gram-scale synthesis and asymmetric catalysis further highlight the practical utility of this method.

19.
Org Lett ; 25(28): 5191-5196, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37428108

ABSTRACT

Herein, the atroposelective construction of five-six heterobiaryl skeleton-based C-N chiral axis has been successfully accomplished via a Co-catalyzed C-H bond activation and annulation process, in which the isonitrile was employed as the C1 source and the 8-aminoquinoline moiety served as both directing group and integral part of C-N atropisomers, respectively. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere, generating the target axial heterobiaryls with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives, and the obtained 3-iminoisoindolinone products with a five membered N-heterocycle exhibit high atropostability. Additionally, the C-N axially chiral monophosphine backbones derived from this protocol possess the potential to become an alternative ligand platform.

20.
Front Oncol ; 13: 1090615, 2023.
Article in English | MEDLINE | ID: mdl-37287917

ABSTRACT

Background: Paraganglioma in the sellar region is an extremely rare entity, with a limited number of cases reported in the literature. Due to the paucity of clinical evidence, the diagnosis and treatment of paragangliomas in the sellar region remain challenging. Herein, we reported a case of sellar paraganglioma with parasellar and suprasellar extension. Particularly, the dynamic evolution of this benign tumor within a 7-year longitudinal observation was presented. Additionally, the relevant literature regarding sellar paraganglioma was comprehensively reviewed. Case description: A 70-year-old woman presented with progressive visual deterioration and headache. Brain magnetic resonance imaging demonstrated a mass in the sellar region with parasellar and suprasellar extension. The patient refused surgical treatment. Seven years later, brain magnetic resonance imaging showed the lesion significantly progressed. Neurological examination revealed bilateral tubular contraction of visual fields. Laboratory examinations showed endocrine hormone levels were normal. Surgical decompression was performed via a subfrontal approach, and subtotal resection was achieved. Histopathological examination confirmed a diagnosis of paraganglioma. Postoperatively, she developed hydrocephalus, and ventriculoperitoneal shunting was performed. Eight months later, cranial CT showed no recurrence of the residual tumor, and the hydrocephalus had been relieved. Conclusion: Paraganglioma occurring in the sellar region is rare, and the preoperative differential diagnosis is difficult. Owing to the infiltration to the cavernous sinus and internal carotid, complete surgical resection is usually impracticable. There has been no consensus regarding postoperative adjuvant radiochemotherapy for the tumor residue. In-situ recurrence and metastasis have been reported in the literature, and close follow-up is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...