Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Mol Plant ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39095994

ABSTRACT

Understanding how maize (Zea mays L.) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite the extensive utilization of the genome-wide association study (GWAS) approach in exploring favorable natural alleles associated with maize cold tolerance, there are few reports that have successfully identified the candidate genes contributing to maize cold tolerance. In this study, by employing a diverse panel of maize inbred lines collected from different germplasm sources, we conducted a GWAS on the variation of the relative injured area of maize true leaves during cold stress-a trait most closely correlated with maize cold tolerance-and identified HSF21, encoding a B-class heat shock transcription factor, which positively regulates cold tolerance at both seedling and germination stages. The natural variations within the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting the binding of bZIP68 transcription factor, a negative regulator of cold tolerance. Through integrated transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we unveiled the function of HSF21 in regulating lipid metabolism homeostasis for modulating cold tolerance in maize. Additionally, HSF21 confers maize cold tolerance without incurring yield penalties. This study thereby establishes HSF21 as a key regulator that enhances cold tolerance in maize, thus providing valuable genetic resources for the breeding of cold-tolerant maize varieties.

2.
Chemistry ; : e202402875, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148303

ABSTRACT

Highly enantioselective Rh-catalyzed allylic substitution of the racemic branched allylic substrates with 2-fluoromalonate was realized enabled by a novel chiral sulfoxide-imine-olefin ligand under mild reaction conditions. The utilization of CuSO4 is beneficial for improving the enantioselectivity. Notably, the chiral fluoro-containing allyl products can be employed in a selective cyclic esterification to form chiral α-fluorolactone bearing vicinal stereogenic centers.

3.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062629

ABSTRACT

The epidermal cells of insects are polarized epithelial cells that play a pivotal role in the insect's molting process. Sinuous, a pivotal structural protein involved in the formation of septate junctions among epithelial cells, is essential for its physiological function. In this study, to determine whether sinuous participates in the regulation of insect molting, we identified the sinuous gene, Lmsinu, in Locusta migratoria, which encodes a protein belonging to the claudin family and shares 62.6% identity with Drosophila's sinuous protein. Lmsinu is expressed in multiple tissues, and its expression level in the integument significantly increases prior to molting. Knockdown of Lmsinu in L. migratoria results in larval mortality during molting. Furthermore, hematoxylin and eosin and chitin staining demonstrate that the downregulation of Lmsinu led to a prolonged degradation process of the old cuticle during the molting process. Electron microscopy analysis further revealed that knockdown of Lmsinu disrupts the formation of septate junctions among epidermal cells, which are a monolayer of polarized epithelial cells, which may hinder the functionality of epidermal cells during the process of molting. In summary, these findings suggest that Lmsinu plays a role in nymph molting by regulating the formation of septate junctions among epidermal cells.


Subject(s)
Claudins , Insect Proteins , Locusta migratoria , Molting , Animals , Molting/genetics , Locusta migratoria/genetics , Locusta migratoria/metabolism , Locusta migratoria/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Claudins/genetics , Claudins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Gene Expression Regulation, Developmental
4.
Materials (Basel) ; 17(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39063679

ABSTRACT

The size of the representative volume element (RVE) for the two-dimensional (2D) random aggregate numerical model of asphalt mortar in a non-destructive state, which directly affects the time required to simulate the linear viscoelastic behavior from asphalt mastic to asphalt mortar. However, in the existing literature, limited research has been conducted on the size determination of the numerical model RVE for asphalt mortar. To provide a recommended size for the typical 2D random aggregate numerical model RVE of asphalt mortar in a nondestructive state, this paper first applies the virtual specimen manufacturing method of asphalt concrete 2D random aggregate to asphalt mortar. Then, it generates numerical model RVEs of asphalt mortar with different maximum particle sizes, after which geometric and numerical analyses are conducted on these models. Finally, based on the geometric and numerical analysis results, the recommended minimum sizes of RVE for the 2D asphalt mortar numerical model are provided.

5.
Cell Signal ; 121: 111301, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019338

ABSTRACT

Ischemic stroke is one of the most disabling and fatal diseases around the world. The damaged brain tissues will undergo excessive autophagy, vascular endothelial cells injury, blood-brain barrier (BBB) impairment and neuroinflammation after ischemic stroke. However, there is no unified viewpoint on the underlying mechanism of brain damage. Transforming growth factor-ß1 (TGF-ß1), as a multi-functional cytokine, plays a crucial role in the intricate pathological processes and helps maintain the physiological homeostasis of brain tissues through various signaling pathways after ischemic stroke. In this review, we summarize the protective role of TGF-ß1 in autophagic flux, BBB, vascular remodeling, neuroinflammation and other aspects after ischemic stroke. Based on the review, we believe that TGF-ß1 could serve as a key target for treating ischemic stroke.


Subject(s)
Autophagy , Blood-Brain Barrier , Ischemic Stroke , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Animals , Blood-Brain Barrier/metabolism , Signal Transduction , Endothelial Cells/metabolism , Brain Ischemia/metabolism
6.
Pflugers Arch ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017932

ABSTRACT

Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.

7.
Science ; 385(6707): 433-438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052792

ABSTRACT

The ever-increasing power conversion efficiency of perovskite solar cells has illuminated the future of the photovoltaic industry, but the development of commercial devices is hampered by their poor stability. In this study, we report a scalable stabilization method using vapor-phase fluoride treatment, which achieves 18.1%-efficient solar modules (228 square centimeters) with accelerated aging-projected T80 lifetimes (time to 80% of efficiency remaining) of 43,000 ± 9000 hours under 1-sun illumination at 30°C. The high stability results from vapor-enabled homogeneous fluorine passivation over large-area perovskite surfaces, suppressing defect formation energy and ion diffusion. The extracted degradation activation energy of 0.61 electron volts for solar modules is comparable to that of most reported stable cells, which indicates that modules are not inherently less stable than cells and closes the cell-to-module stability gap.

8.
ACS Appl Mater Interfaces ; 16(31): 41596-41615, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39066695

ABSTRACT

MXene emerges as a premier candidate for electromagnetic shielding owing to its unique properties as a novel two-dimensional material. Its exceptional electrical conductivity, chemical reactivity, surface tunability, and facile processing render it highly suitable for diverse electromagnetic shielding applications. The research status of MXene and MXene-based electromagnetic shielding materials is systematically discussed in this paper. First, the research status of MXene as a single-component electromagnetic shielding material is briefly introduced. Subsequently, the research status of composite structures constructed by MXene with polymers, carbon derivatives, and ferrites is introduced in detail. Furthermore, the research progress of MXene-based ternary and quaternary composite electromagnetic shielding materials is further focused. Finally, the application of MXene-based composite electromagnetic shielding materials is prospected. A deeper understanding of MXene's electromagnetic shielding properties is facilitated by this paper, providing the direction for the future development of two-dimensional materials in the design and processing of electromagnetic shielding materials.

9.
Sci Total Environ ; 941: 173680, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844212

ABSTRACT

Microorganisms play a critical role in the biogeochemical cycling of selenium in natural ecosystems, particularly in reducing selenite (Se(IV)) to element selenium (Se(0)) which reduces its mobility and bioavailability. However, Se(IV)-reducing bacteria and their reducing characteristics in estuarine sediments remain inadequately understood. In this study, the reduction of Se(IV) was confirmed to be microbially driven through the cultivation of a mixture of estuarine sediment and Se(IV) under aerobic conditions. Community analysis indicates that Bacillus was primarily involved in the reduction of Se(IV). A strain with high salt tolerance (7.5 % NaCl) and Se(IV) resistance (up to 200 mM), Bacillus cereus SD1, was isolated from an estuarine sediment. The reduction of Se(IV) occurred concomitantly with the onset of microbial growth, and reduction capacity increased approximately 5-fold by adjusting the pH. In addition, Se(IV) reduction in Bacillus cereus SD1 was significantly inhibited by sulfite, and the key enzyme activity tests revealed the possible presence of a sulfite reductase-mediated Se(IV) reduction pathway. These research findings provide new insights into the bioreducing characteristics and the biogeochemical cycling of selenium in estuarine environments.


Subject(s)
Estuaries , Geologic Sediments , Selenium , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Selenium/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Bacillus cereus/metabolism , Oxidation-Reduction , Bacteria/metabolism
11.
Insects ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667367

ABSTRACT

Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.

12.
Angew Chem Int Ed Engl ; 63(28): e202404329, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38683742

ABSTRACT

A hitherto unknown class of C4-symmetric Caryl-Cß (C3, C8, C13, C18) axially chiral porphyrins has been synthesized and the application of their iridium (Ir) complexes in catalytic asymmetric C(sp3)-H functionalization is documented. Cyclotetramerization of enantioenriched axially chiral 2-hydroxymethyl-3-naphthyl pyrroles under mild acidic conditions affords, after oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the C4-symmetric α,α,α,α-atropenantiomer as an only isolable diastereomer. Both regioisomeric Ir(Por*)(CO)(Cl) complexes catalyze the carbene C-H insertion reaction affording the same enantiomer, albeit with slight difference in enantioselectivity. With the optimum Ir-complex 3 e, the 2-substituted arylacetic acid derivatives were generated from diazo compounds and cyclohexadiene in excellent yields and enantioselectivities.

13.
Comput Biol Med ; 174: 108489, 2024 May.
Article in English | MEDLINE | ID: mdl-38640633

ABSTRACT

Deep neural networks (DNNs) involve advanced image processing but depend on large quantities of high-quality labeled data. The presence of noisy data significantly degrades the DNN model performance. In the medical field, where model accuracy is crucial and labels for pathological images are scarce and expensive to obtain, the need to handle noisy data is even more urgent. Deep networks exhibit a memorization effect, they tend to prioritize remembering clean labels initially. Therefore, early stopping is highly effective in managing learning with noisy labels. Previous research has often concentrated on developing robust loss functions or implementing training constraints to mitigate the impact of noisy labels; however, such approaches have frequently resulted in underfitting. We propose using knowledge distillation to slow the learning process of the target network rather than preventing late-stage training from being affected by noisy labels. In this paper, we introduce a data sample self-selection strategy based on early stopping to filter out most of the noisy data. Additionally, we employ the distillation training method with dual teacher networks to ensure the steady learning of the student network. The experimental results show that our method outperforms current state-of-the-art methods for handling noisy labels on both synthetic and real-world noisy datasets. In particular, on the real-world pathological image dataset Chaoyang, the highest classification accuracy increased by 2.39 %. Our method leverages the model's predictions based on training history to select cleaner datasets and retrains them using these cleaner datasets, significantly mitigating the impact of noisy labels on model performance.


Subject(s)
Neural Networks, Computer , Humans , Deep Learning , Image Processing, Computer-Assisted/methods , Algorithms
14.
Bioresour Technol ; 399: 130563, 2024 May.
Article in English | MEDLINE | ID: mdl-38461871

ABSTRACT

An ultralight 3D carbon fiber aerogel with good flexibility is developed via soaking cotton in water and then calcinating at a high temperature. This cotton-derived carbon material is constituted by amorphous carbon and retains slight oxygen-containing groups. Besides, a lot of hollow carbon nanocapsules are yielded on the inside surface, resulting in abundant micropores and mesopores. Systemic investigations explore the molecular transformation from cotton to carbon fiber, and the formation of carbon nanocapsules. In the adsorption process for methyl orange (MO), this carbon fiber aerogel exhibits both a rapid adsorption rate and the ultrahigh adsorbability of 862.9 mg/g, outclassing most of carbon materials reported. Therefore, a dynamic sewage treatment system is built and consecutively removes hydrosoluble pollution for a long-term running time. For the cotton-derived carbon fiber aerogel, the good mechanical flexibility, excellent adsorption property, and high stability jointly provide a vast application prospect in future industrial wastewater remediation.


Subject(s)
Nanocapsules , Water Pollutants, Chemical , Carbon Fiber , Carbon , Sewage , Adsorption , Gossypium
15.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474531

ABSTRACT

A enantioselective tandem transformation, concerning asymmetric allylic decarboxylative addition and cyclization of N-nosylimines with vinylethylene carbonates (VECs), in the presence of [Rh(C2H4)2Cl]2, chiral sulfoxide-N-olefin tridentate ligand has been developed. The reaction of VECs with various substituted N-nosylimines proceeded smoothly under mild conditions, providing highly functionalized oxazolidine frameworks in good to high yields with good to excellent enantioselectivity.

16.
Org Lett ; 26(9): 1970-1974, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38421216

ABSTRACT

A well-defined tridentate chiral sulfoxide-N-olefin ligand has been designed and applied in rhodium-catalyzed asymmetric allylic substitutions of racemic allylic carbonates, providing the branched allylic products in good yields with good to high enantioselectivities and excellent regioselectivities. This reaction mechanism, which involves the possible hemilability of olefin coordination on sulfoxide-N-olefin hybrid ligands with rhodium, is elaborated as well.

17.
Am J Chin Med ; 52(1): 231-252, 2024.
Article in English | MEDLINE | ID: mdl-38328828

ABSTRACT

Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.


Subject(s)
Berberine , Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Rats , Animals , Berberine/pharmacology , Berberine/therapeutic use , Autophagy , Stroke/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion Injury/drug therapy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/pharmacology
18.
Insect Sci ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214184

ABSTRACT

The foregut, located at the front of the digestive tract, serves a vital role in insects by storing and grinding food into small particles. The innermost layer of the foregut known as the chitinous intima, comes into direct contact with the food and acts as a protective barrier against abrasive particles. Knickkopf (Knk) is required for chitin organization in the chitinous exoskeleton, tracheae and wings. Despite its significance, little is known about the biological function of Knk in the foregut. In this study, we found that LmKnk was stably expressed in the foregut, and highly expressed before molting in Locusta migratoria. To ascertain the biological function of LmKnk in the foregut, we synthesized specific double-stranded LmKnk (dsLmKnk) and injected it into locusts. Our findings showed a significant decrease in the foregut size, along with reduced food intake and accumulation of residues in the foregut after dsLmKnk injection. Morphological observations revealed that newly formed intima became thinner and lacked chitin lamella. Furthermore, fluorescence immunohistochemistry revealed that LmKnk was located in the apical region of new intima and epithelial cells. Taken together, this study provides insights into the biological function of LmKnk in the foregut, and identifies the potential target gene for exploring biological pest management strategies.

19.
Nat Commun ; 15(1): 513, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218871

ABSTRACT

Among today's nonvolatile memories, ferroelectric-based capacitors, tunnel junctions and field-effect transistors (FET) are already industrially integrated and/or intensively investigated to improve their performances. Concurrently, because of the tremendous development of artificial intelligence and big-data issues, there is an urgent need to realize high-density crossbar arrays, a prerequisite for the future of memories and emerging computing algorithms. Here, a two-terminal ferroelectric fin diode (FFD) in which a ferroelectric capacitor and a fin-like semiconductor channel are combined to share both top and bottom electrodes is designed. Such a device not only shows both digital and analog memory functionalities but is also robust and universal as it works using two very different ferroelectric materials. When compared to all current nonvolatile memories, it cumulatively demonstrates an endurance up to 1010 cycles, an ON/OFF ratio of ~102, a feature size of 30 nm, an operating energy of ~20 fJ and an operation speed of 100 ns. Beyond these superior performances, the simple two-terminal structure and their self-rectifying ratio of ~ 104 permit to consider them as new electronic building blocks for designing passive crossbar arrays which are crucial for the future in-memory computing.

SELECTION OF CITATIONS
SEARCH DETAIL