Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Front Bioeng Biotechnol ; 12: 1389243, 2024.
Article in English | MEDLINE | ID: mdl-38742206

ABSTRACT

Introduction: The need for effective balance control in lower limb rehabilitation exoskeletons is critical for ensuring stability and safety during rehabilitation training. Current research into specialized balance recovery strategies is limited, highlighting a gap in biomechanics-inspired control methods. Methods: We introduce a new metric called "Orbit Energy" (OE), which assesses the balance state of the human-exoskeleton system based on the dynamics of the overall center of mass. Our control framework utilizes OE to choose appropriate balance recovery strategies, including torque controls at the ankle and hip joints. Results: The efficacy of our control algorithm was confirmed through Matlab Simulink simulations, which analyzed the recovery of balance under various disturbance forces and conditions. Further validation came from physical experiments with human subjects wearing the exoskeleton, where a significant reduction in muscle activation was observed during balance maintenance under external disturbances. Discussion: Our findings underscore the potential of biomechanics-inspired metrics like OE in enhancing exoskeleton functionality for rehabilitation purposes. The introduction of such metrics could lead to more targeted and effective balance recovery strategies, ultimately improving the safety and stability of exoskeleton use in rehabilitation settings.

2.
Front Neurosci ; 18: 1364409, 2024.
Article in English | MEDLINE | ID: mdl-38680447

ABSTRACT

Deformable registration plays a fundamental and crucial role in scenarios such as surgical navigation and image-assisted analysis. While deformable registration methods based on unsupervised learning have shown remarkable success in predicting displacement fields with high accuracy, many existing registration networks are limited by the lack of multi-scale analysis, restricting comprehensive utilization of global and local features in the images. To address this limitation, we propose a novel registration network called multi-scale feature extraction-integration network (MF-Net). First, we propose a multiscale analysis strategy that enables the model to capture global and local semantic information in the image, thus facilitating accurate texture and detail registration. Additionally, we introduce grouped gated inception block (GI-Block) as the basic unit of the feature extractor, enabling the feature extractor to selectively extract quantitative features from images at various resolutions. Comparative experiments demonstrate the superior accuracy of our approach over existing methods.

3.
Front Neurosci ; 18: 1364338, 2024.
Article in English | MEDLINE | ID: mdl-38486967

ABSTRACT

In clinical practice and research, the classification and diagnosis of neurological diseases such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA) have long posed a significant challenge. Currently, deep learning, as a cutting-edge technology, has demonstrated immense potential in computer-aided diagnosis of PD and MSA. However, existing methods rely heavily on manually selecting key feature slices and segmenting regions of interest. This not only increases subjectivity and complexity in the classification process but also limits the model's comprehensive analysis of global data features. To address this issue, this paper proposes a novel 3D context-aware modeling framework, named 3D-CAM. It considers 3D contextual information based on an attention mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively integrates a Contextual Information Module and a Location Filtering Module. The Contextual Information Module can be applied to feature maps at any layer, effectively combining features from adjacent slices and utilizing an attention mechanism to focus on crucial features. The Location Filtering Module, on the other hand, is employed in the post-processing phase to filter significant slice segments of classification features. By employing this method in the fully automated classification of PD and MSA, an accuracy of 85.71%, a recall rate of 86.36%, and a precision of 90.48% were achieved. These results not only demonstrates potential for clinical applications, but also provides a novel perspective for medical image diagnosis, thereby offering robust support for accurate diagnosis of neurological diseases.

4.
Soft Matter ; 20(12): 2812-2822, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446214

ABSTRACT

The droplet lossless directional motion control on slippery surfaces holds immense promise for applications in microfluidic chips, hazardous substance detection, chemical dispensing, etc. However, a significant challenge in this domain lies in efficiently developing soft, slippery surfaces with large-range anisotropic wettability and compatibility for curved scenarios. This study addressed this challenge through a quick 3D printing-assisted method to produce soft, ridged-slippery surfaces (SRSSs) as the droplet manipulation platform. The SRSSs demonstrated substantial anisotropic rolling resistances, measuring 116.9 µN in the perpendicular direction and 7.7 µN in the parallel direction, exhibiting a ratio of 15.2. Combining several extents of anisotropic wettability on a soft substrate could realize diverse reagent manipulation functions. Furthermore, these SRSSs showcased high compatibility with various droplet constituents, impressive liquid impact resistance, self-repair capability, and mechanical durability and thermal durability, ensuring exceptional applicability. As proofs of concept, the SRSSs were successfully applied in droplet control and classification for heavy metal ion detection, mechanical arm-based droplet grab and release, and cross-species transport, showcasing their remarkable versatility, compatibility, and practicality in advanced droplet microfluidic chips and water harvesting applications.

5.
Front Neurorobot ; 18: 1332721, 2024.
Article in English | MEDLINE | ID: mdl-38419818

ABSTRACT

Introduction: For patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance. Methods: This paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients. Results: The experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn. Discussion: These experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.

6.
Front Neurosci ; 18: 1337580, 2024.
Article in English | MEDLINE | ID: mdl-38356647

ABSTRACT

Introduction: Shape memory alloy (SMA) actuators are attractive options for robotic applications due to their salient features. So far, achieving precise control of SMA actuators and applying them to human-robot interaction scenarios remains a challenge. Methods: This paper proposes a novel approach to deal with the control problem of a SMA actuator. Departing from conventional mechanism models, we attempt to describe this nonlinear plant using a gray-box model, in which only the input current and the output displacement are measured. The control scheme consists of the model parameters updating and the control law calculation. The adaptation algorithm is founded on the multi-innovation concept and incorporates a dead-zone weighted factor, aiming to concurrently reduce computational complexities and enhance robustness properties. The control law is based on a PI controller, the gains of which are designed by the pole assignment technique. Theoretical analysis proves that the closed-loop performance can be ensured under mild conditions. Results: The experiments are first conducted through the Beckhoff controller. The comparative results suggest that the proposed adaptive PI control strategy exhibits broad applicability, particularly under load variations. Subsequently, the SMA actuator is designed and incorporated into the hand rehabilitation robot. System position tracking experiments and passive rehabilitation training experiments for various gestures are then conducted. The experimental outcomes demonstrate that the hand rehabilitation robot, utilizing the SMA actuator, achieves higher position tracking accuracy and a more stable system under the adaptive control strategy proposed in this paper. Simultaneously, it successfully accommodates hand rehabilitation movements for multiple gestures. Discussion: The adaptive controller proposed in this paper takes into account both the computational complexity of the model and the accuracy of the control results, Experimental results not only demonstrate the practicality and reliability of the controller but also attest to its potential application in human-machine interaction within the field of neural rehabilitation.

7.
Innovation (Camb) ; 5(1): 100556, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38239783
8.
J Neurosurg Case Lessons ; 6(17)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37871335

ABSTRACT

BACKGROUND: Intramedullary ependymal cysts are rare and difficult to distinguish from syringomyelia and neuroenteric cysts. Almost all cases in the literature have been case reports and have been performed with the traditional posterior median sulcus incision, which is difficult to identify accurately during spinal rotation. Approximately 40% of cases have transient neurological deterioration. The dorsal root entry zone has been proven to be an effective incision area in the treatment of intramedullary lesions, but so far, its utilization in intramedullary ependymal cysts has been rarely reported. OBSERVATIONS: This study is the first to report on six cases of intramedullary ependymal cysts treated with an 8-mm incision in the dorsal root entry zone to fully establish the communication between the cyst and the subarachnoid space. Imaging changes and neurological improvement were analyzed in all cases before and after surgery and were followed up for 49.7 months. LESSONS: The utilization of dorsal root entry zone fenestration in intramedullary ependymal cyst has demonstrated feasibility and effectiveness, ensuring the functional integrity of the posterior column.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 953-964, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37879925

ABSTRACT

In response to the problem that the traditional lower limb rehabilitation scale assessment method is time-consuming and difficult to use in exoskeleton rehabilitation training, this paper proposes a quantitative assessment method for lower limb walking ability based on lower limb exoskeleton robot training with multimodal synergistic information fusion. The method significantly improves the efficiency and reliability of the rehabilitation assessment process by introducing quantitative synergistic indicators fusing electrophysiological and kinematic level information. First, electromyographic and kinematic data of the lower extremity were collected from subjects trained to walk wearing an exoskeleton. Then, based on muscle synergy theory, a synergistic quantification algorithm was used to construct synergistic index features of electromyography and kinematics. Finally, the electrophysiological and kinematic level information was fused to build a modal feature fusion model and output the lower limb motor function score. The experimental results showed that the correlation coefficients of the constructed synergistic features of electromyography and kinematics with the clinical scale were 0.799 and 0.825, respectively. The results of the fused synergistic features in the K-nearest neighbor (KNN) model yielded higher correlation coefficients ( r = 0.921, P < 0.01). This method can modify the rehabilitation training mode of the exoskeleton robot according to the assessment results, which provides a basis for the synchronized assessment-training mode of "human in the loop" and provides a potential method for remote rehabilitation training and assessment of the lower extremity.


Subject(s)
Exoskeleton Device , Stroke Rehabilitation , Humans , Reproducibility of Results , Walking/physiology , Lower Extremity , Algorithms , Stroke Rehabilitation/methods
10.
Heliyon ; 9(9): e19255, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662811

ABSTRACT

To analyze the specific effects of prolonged computer use on oculomotor function, we propose an oculomotor function evaluation system to analyze changes in oculomotor movement function by using an eye tracker to record eye movement data when performing gaze, smooth pursuit, and saccade under normal condition, after one hour and one and a half hours of continuous working at a computer. The captured eye movement data is pre-processed, and then data features are calculated and analyzed to understand the specific effects of continuously using the computer on the oculomotor function. The results show that the oculomotor function decreases as we gaze at the computer screen for longer periods, as evidenced by a decrease in the stability of the gaze function, a reduction in the gaze focus, a reduction in the speed of eye saccades, and a decrease in the smooth pursuit function. In short, the oculomotor function worsens after prolonged working at a computer. This paper presents the effects of continuously using the computer quantificationally for the first time. The proposed oculomotor function evaluation system could also be used to assess patients who have a disability in oculomotor function and specific individuals, e.g. pilots.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 654-662, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666755

ABSTRACT

Aiming at the human-computer interaction problem during the movement of the rehabilitation exoskeleton robot, this paper proposes an adaptive human-computer interaction control method based on real-time monitoring of human muscle state. Considering the efficiency of patient health monitoring and rehabilitation training, a new fatigue assessment algorithm was proposed. The method fully combined the human neuromuscular model, and used the relationship between the model parameter changes and the muscle state to achieve the classification of muscle fatigue state on the premise of ensuring the accuracy of the fatigue trend. In order to ensure the safety of human-computer interaction, a variable impedance control algorithm with this algorithm as the supervision link was proposed. On the basis of not adding redundant sensors, the evaluation algorithm was used as the perceptual decision-making link of the control system to monitor the muscle state in real time and carry out the robot control of fault-tolerant mechanism decision-making, so as to achieve the purpose of improving wearing comfort and improving the efficiency of rehabilitation training. Experiments show that the proposed human-computer interaction control method is effective and universal, and has broad application prospects.


Subject(s)
Exoskeleton Device , Humans , Muscle Fatigue , Muscles , Algorithms , Electric Impedance
12.
J Am Chem Soc ; 145(33): 18391-18401, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37565777

ABSTRACT

Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.

13.
Environ Sci Pollut Res Int ; 30(42): 96424-96440, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37567993

ABSTRACT

As the problems of "valuing compliance over trading" and quota over-allocation seriously affect the effectiveness of China's national carbon emission trading (CET) market, the quota auction mechanism will be introduced timely to solve these problems. Since implementing the quota auction means reduced free quotas, regulated enterprises are more motivated to pursue low-carbon technology innovation (L-CTI). On these grounds, by establishing a system dynamics model of the national CET market and designing seven scenarios for simulation analysis, this paper investigates the impact of quota auction and L-CTI on the emission reduction effectiveness and cost effectiveness of the national CET market. The results indicate that for the national CET market, introducing quota auction is conducive to decreasing the CET price and improving its liquidity and emission reduction effectiveness, which is one of the quota allocation mechanisms to improve the CET market effectiveness at present. However, the quota auction will increase the abatement cost and reduce the cost effectiveness. Therefore, to improve the institutional performance of China's CET system, it is necessary to conduct L-CTI to alleviate the increasing abatement cost caused by quota auction, and thus improve the emission reduction effectiveness and cost effectiveness of the national CET market.


Subject(s)
Carbon , Systems Analysis , Carbon/analysis , Technology , China
14.
J Am Chem Soc ; 145(33): 18402-18413, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578165

ABSTRACT

Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.

15.
Clin Neurol Neurosurg ; 232: 107848, 2023 09.
Article in English | MEDLINE | ID: mdl-37419081

ABSTRACT

PURPOSE: In economically undeveloped areas, surgery for basilar invagination (BI) is still a serious economic burden for people. This study introduces a modified interfacet technique for the treatment of BI using shaped autologous occipital bone mass to reduce BI and to save economical expenditure. METHODS: The data of 6 patients with BI who underwent modified interfacet technique using shaped autologous occipital bone mass in our hospital from April 2020 to February 2021 were retrospectively analyzed. During the operation, osteotomy at the external occipital protuberance was performed using ultrasonic osteotome, followed by interfacet release and implantation of shaped autologous occipital bone mass to complete vertical reduction. The atlantodental interval (ADI), Chamberlain's line violation (CLV), clivo-axial angle (CXA) and cervico-medullary angle (CMA) were compared before and after surgery. Additionally, we observed implant stability during the follow-up period to assess the long-term success of the modified interfacet technique. RESULTS: The surgical procedure was successful in all six patients, with no reported incidents of vascular injury, spinal cord injury, or dural tear. Following the operation, improvements were observed in the ADI, CLV, CXA, and CMA. Throughout the follow-up period, the implants remained stable, demonstrating no complications such as bone resorption of the autologous occipital bone mass, implant fracture, or displacement. CONCLUSION: The utilization of shaped autologous occipital bone mass in atlantoaxial interfacet bone grafting has demonstrated effectiveness and feasibility. This technique offers simplicity, ease of preparation, and cost-effectiveness, making it a viable option for treating BI.


Subject(s)
Atlanto-Axial Joint , Joint Dislocations , Platybasia , Spinal Fusion , Humans , Retrospective Studies , Joint Dislocations/surgery , Atlanto-Axial Joint/surgery , Platybasia/surgery , Occipital Bone/diagnostic imaging , Occipital Bone/surgery , Spinal Fusion/methods
16.
Neurospine ; 20(1): 231-239, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37016869

ABSTRACT

OBJECTIVE: Long-level intramedullary spinal cord tumors (LIMSCTs) cause complex treatment issues. However, LIMSCTs have rarely been analyzed separately. The authors reported a large case series of LIMSCTs and analyzed the clinical characteristics and treatment outcomes. METHODS: The medical data of patients with LIMSCTs at our institution between January 2015 and December 2019 were retrospectively reviewed. Demographics, tumor size and location, pathology, extent of resection, and neurological functional status were collected. RESULTS: A total of 43 consecutive cases were included. Twenty-three cases (53.5%) of LIMSCTs were ependymal tumors. All patients with ependymal tumors achieved gross total resection (GTR). In ependymal tumor cases, 3 cases (13%) of ependymal tumors experienced postoperative neurological deterioration, and 66% of them showed an improvement at follow-up; 25.6% were low-grade astrocytic tumors. The rates of GTR, subtotal resection (STR) and partial resection (PR) were 63.6%, 27.3%, and 9.1%, respectively. Twenty-seven percent cases showed postoperative neurological worsening, and 33% of them had an improvement at follow-up; 20.9% were high-grade astrocytic tumors. The excision rates were 44.4% for GTR, 44.4% for STR, and 11% for PR, respectively. Fifty-five percent cases showed postoperative neurological worsening, and none of them had an improvement at follow-up. CONCLUSION: In this series, all LIMSCTs were gliomas. Aggressive tumor resection did not increase the risk of long-term functional deterioration in ependymal tumors and low-grade astrocytic tumors, but in high-grade astrocytic tumors, patients had a higher risk of neurological deterioration and difficulty in recovery. In ependymal tumors and low-grade astrocytic tumors, patients can achieve long-time survival after performing aggressive tumor resection.

17.
J Pathol ; 260(3): 317-328, 2023 07.
Article in English | MEDLINE | ID: mdl-37114614

ABSTRACT

Primary spinal cord astrocytoma (SCA) is a rare disease. Knowledge about the molecular profiles of SCAs mostly comes from intracranial glioma; the pattern of genetic alterations of SCAs is not well understood. Herein, we describe genome-sequencing analyses of primary SCAs, aiming to characterize the mutational landscape of primary SCAs. We utilized whole exome sequencing (WES) to analyze somatic nucleotide variants (SNVs) and copy number variants (CNVs) among 51 primary SCAs. Driver genes were searched using four algorithms. GISTIC2 was used to detect significant CNVs. Additionally, recurrently mutated pathways were also summarized. A total of 12 driver genes were identified. Of those, H3F3A (47.1%), TP53 (29.4%), NF1 (19.6%), ATRX (17.6%), and PPM1D (17.6%) were the most frequently mutated genes. Furthermore, three novel driver genes seldom reported in glioma were identified: HNRNPC, SYNE1, and RBM10. Several germline mutations, including three variants (SLC16A8 rs2235573, LMF1 rs3751667, FAM20C rs774848096) that were associated with risk of brain glioma, were frequently observed in SCAs. Moreover, 12q14.1 (13.7%) encompassing the oncogene CDK4 was recurrently amplified and negatively affected patient prognosis. Besides frequently mutated RTK/RAS pathway and PI3K pathway, the cell cycle pathway controlling the phosphorylation of retinoblastoma protein (RB) was mutated in 39.2% of patients. Overall, a considerable degree of the somatic mutation landscape is shared between SCAs and brainstem glioma. Our work provides a key insight into the molecular profiling of primary SCAs, which might represent candidate drug targets and complement the molecular atlas of glioma. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Astrocytoma , Glioma , Humans , Phosphatidylinositol 3-Kinases , Mutation , Glioma/genetics , Spinal Cord/pathology , RNA-Binding Proteins/genetics
18.
J Am Chem Soc ; 145(18): 10061-10070, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37098077

ABSTRACT

Triplet-triplet annihilation-based molecular photon upconversion (TTA-UC) is a photophysical phenomenon that can yield high-energy emitting photons from low-energy incident light. TTA-UC is believed to fuse two triplet excitons into a singlet exciton through several consecutive energy-conversion processes. When organic aromatic dyes─i.e., sensitizers and annihilators─are used in TTA-UC, intermolecular distances, as well as relative orientations between the two chromophores, are important in an attempt to attain high upconversion efficiencies. Herein, we demonstrate a host-guest strategy─e.g., a cage-like molecular container incorporating two porphyrinic sensitizers and encapsulating two perylene emitters inside its cavity─to harness photon upconversion. Central to this design is tailoring the cavity size (9.6-10.4 Å) of the molecular container so that it can host two annihilators with a suitable [π···π] distance (3.2-3.5 Å). The formation of a complex with a host:guest ratio of 1:2 between a porphyrinic molecular container and perylene was confirmed by NMR spectroscopy, mass spectrometry, and isothermal titration calorimetry (ITC) as well as by DFT calculations. We have obtained TTA-UC yielding blue emission at 470 nm when the complex is excited with low-energy photons. This proof-of-concept demonstrates that TTA-UC can take place in one supermolecule by bringing together the sensitizers and annihilators. Our investigations open up some new opportunities for addressing several issues associated with supramolecular photon upconversion, such as sample concentrations, molecular aggregation, and penetration depths, which have relevance to biological imaging applications.

19.
Article in English | MEDLINE | ID: mdl-37018295

ABSTRACT

A significant number of stroke patients are permanently left with a hemiparetic upper limb after the poststroke six-month golden recovery period, resulting in a drastic decline in their quality of life. This study develops a novel foot-controlled hand/forearm exoskeleton that enables patients with hemiparetic hands and forearms to restore their voluntary activities of daily living. Patients can accomplish dexterous hand/arm manipulation on their own with the assistance of a foot-controlled hand/forearm exoskeleton by utilizing foot movements on the unaffected side as command signals. The proposed foot-controlled exoskeleton was first tested on a stroke patient with a chronic hemiparetic upper limb. The testing results showed that the forearm exoskeleton can assist the patient in achieving approximately 107°of voluntary forearm rotation with a static control error less than 1.7°, whereas the hand exoskeleton can assist the patient in realizing at least six different voluntary hand gestures with a success rate of 100%. Further experiments involving more patients demonstrated that the foot-controlled hand/forearm exoskeleton can help patients in restoring some of the voluntary activities of daily living with their paretic upper limb, such as picking up food to eat and opening water bottles to drink, and etc. This research implies that the foot-controlled hand/forearm exoskeleton is a viable way to restore the upper limb activities of stroke patients with chronic hemiparesis.

20.
J Phys Chem Lett ; 14(10): 2573-2579, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36880847

ABSTRACT

Singlet fission (SF) is a spin-allowed process in which a photogenerated singlet exciton down-converts into two triplet excitons. Perylene-3,4-dicarboximide (PMI) has singlet and triplet state energies of 2.4 and 1.1 eV, respectively; thus making SF slightly exoergic and providing triplet excitons that have sufficient energy to raise the efficiency of single-junction solar cells by reducing thermalization losses from hot excitons formed when absorbed photons have energies higher than the semiconductor bandgap. However, PMI SF in the solid state has not been studied previously. Here, we show that 2,5-diphenyl-N-(2-ethylhexyl)perylene-3,4-dicarboximide (dp-PMI) crystallizes into a slip-stacked intermolecular morphology favorable for SF. Transient absorption microscopy and spectroscopy show that dp-PMI SF occurs in ≤50 ps in both single crystals and polycrystalline thin films with a triplet yield of 150 ± 20%. Ultrafast SF in the solid state, the high triplet yield, and its photostability make dp-PMI an attractive candidate for SF-enhanced solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...