Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2205636119, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35858302

ABSTRACT

Second-order optical nonlinearity is the essential concept for realizing modern technologies of optical wavelength conversion. The emerging helical polarization fluid, dubbed helielectric nematic, now makes it possible to design and easily fabricate various polarization structures and control their optical responses. The matter family is demonstrated as an ideal liquid platform for nonlinear optical conversion and amplification with electric-reconfigurable tunability. We here develop a universal phase matching theory and reveal a nonclassic chirality-sensitive phase-matching condition in the polarization helices through both the numerical calculation and the experimental validations. The nonlinear optical amplification can be dramatically modulated with a contrast ratio of >100:1 by an in-plane electric field. Furthermore, we employ the director relaxation under electric fields coupled with nonlinear optical simulation to clarify the topology-light interactions.

2.
Proc Natl Acad Sci U S A ; 118(42)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34642251

ABSTRACT

Recently, a type of ferroelectric nematic fluid has been discovered in liquid crystals in which the molecular polar nature at molecule level is amplified to macroscopic scales through a ferroelectric packing of rod-shaped molecules. Here, we report on the experimental proof of a polar chiral liquid matter state, dubbed helielectric nematic, stabilized by the local polar ordering coupled to the chiral helicity. This helielectric structure carries the polar vector rotating helically, analogous to the magnetic counterpart of helimagnet. The helielectric state can be retained down to room temperature and demonstrates gigantic dielectric and nonlinear optical responses. This matter state opens a new chapter for developing the diverse polar liquid crystal devices.

3.
Sci Adv ; 7(17)2021 Apr.
Article in English | MEDLINE | ID: mdl-33883139

ABSTRACT

Superhigh-ε materials that exhibit exceptionally high dielectric permittivity are recognized as potential candidates for a wide range of next-generation photonic and electronic devices. In general, achieving a high-ε state requires low material symmetry, as most known high-ε materials are symmetry-broken crystals. There are few reports on fluidic high-ε dielectrics. Here, we demonstrate how small molecules with high polarity, enabled by rational molecular design and machine learning analyses, enable the development of superhigh-ε fluid materials (dielectric permittivity, ε > 104) with strong second harmonic generation and macroscopic spontaneous polar ordering. The polar structures are confirmed to be identical for all the synthesized materials. Furthermore, adapting this strategy to high-molecular weight systems allows us to generalize this approach to polar polymeric materials, creating polar soft matters with spontaneous symmetry breaking.

SELECTION OF CITATIONS
SEARCH DETAIL