Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters










Publication year range
1.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778109

ABSTRACT

Implanted biomaterials and devices face compromised functionality and efficacy in the long term owing to foreign body reactions and subsequent formation of fibrous capsules at the implant-tissue interfaces1-4. Here we demonstrate that an adhesive implant-tissue interface can mitigate fibrous capsule formation in diverse animal models, including rats, mice, humanized mice and pigs, by reducing the level of infiltration of inflammatory cells into the adhesive implant-tissue interface compared to the non-adhesive implant-tissue interface. Histological analysis shows that the adhesive implant-tissue interface does not form observable fibrous capsules on diverse organs, including the abdominal wall, colon, stomach, lung and heart, over 12 weeks in vivo. In vitro protein adsorption, multiplex Luminex assays, quantitative PCR, immunofluorescence analysis and RNA sequencing are additionally carried out to validate the hypothesis. We further demonstrate long-term bidirectional electrical communication enabled by implantable electrodes with an adhesive interface over 12 weeks in a rat model in vivo. These findings may offer a promising strategy for long-term anti-fibrotic implant-tissue interfaces.

2.
Nat Commun ; 15(1): 2958, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627374

ABSTRACT

Marine animals equipped with sensors provide vital information for understanding their ecophysiology and collect oceanographic data on climate change and for resource management. Existing methods for attaching sensors to marine animals mostly rely on invasive physical anchors, suction cups, and rigid glues. These methods can suffer from limitations, particularly for adhering to soft fragile marine species such as squid and jellyfish, including slow complex operations, unreliable fixation, tissue trauma, and behavior changes of the animals. However, soft fragile marine species constitute a significant portion of ocean biomass (>38.3 teragrams of carbon) and global commercial fisheries. Here we introduce a soft hydrogel-based bioadhesive interface for marine sensors that can provide rapid (time <22 s), robust (interfacial toughness >160 J m-2), and non-invasive adhesion on various marine animals. Reliable and rapid adhesion enables large-scale, multi-animal sensor deployments to study biomechanics, collective behaviors, interspecific interactions, and concurrent multi-species activity. These findings provide a promising method to expand a burgeoning research field of marine bio-sensing from large marine mammals and fishes to small, soft, and fragile marine animals.


Subject(s)
Cnidaria , Ecosystem , Animals , Biomass , Fishes/physiology , Oceanography , Fisheries , Mammals
3.
Adv Mater ; : e2403594, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639424

ABSTRACT

Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.

5.
Nat Commun ; 15(1): 1215, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331971

ABSTRACT

Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.


Subject(s)
Tissue Adhesives , Rats , Animals , Tissue Adhesives/chemistry , Adhesives , Hydrogels/chemistry , Technology
6.
Sci Adv ; 10(6): eadk8426, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335289

ABSTRACT

Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).


Subject(s)
Elasticity Imaging Techniques , Wearable Electronic Devices , Humans , Ultrasonography
7.
Adv Mater ; 36(3): e2307288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865838

ABSTRACT

Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long-lasting interface. BioAdheSil, a silicone-based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue-infiltration-based long-term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long-lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long-term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.


Subject(s)
Adhesives , Silicones , Rats , Animals , Materials Testing , Hydrophobic and Hydrophilic Interactions , Water/chemistry
8.
Sci Adv ; 9(50): eadj0411, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091402

ABSTRACT

Strain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g., natural rubber) is typically below 20%, and the stretchability plateaus due to trapped entanglements. We report a class of elastomers formed by end-linking and then deswelling star polymers with low defects and no trapped entanglements, which achieve strain-induced crystallinity of up to 50%. The deswollen end-linked star elastomer (DELSE) reaches an ultrahigh stretchability of 12.4 to 33.3, scaling beyond the saturated limit of common elastomers. The DELSE also exhibits a high fracture energy of 4.2 to 4.5 kJ m-2 while maintaining low hysteresis. The heightened SIC and stretchability synergistically promote a high elastocaloric effect with an adiabatic temperature change of 9.3°C.

9.
Phys Rev Lett ; 131(22): 228102, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101371

ABSTRACT

Connecting polymer network fracture to molecular-level chain scission remains a quandary. While the Lake-Thomas model predicts the intrinsic fracture energy of a polymer network is the energy to rupture a layer of chains, it underestimates recent experiments by ∼1-2 orders of magnitude. Here we show that the intrinsic fracture energy of polymerlike networks stems from nonlocal energy dissipation by relaxing chains far from the crack tip using experiments and simulations of 2D and 3D networks with varying defects, dispersity, topologies, and length scales. Our findings not only provide physical insights into polymer network fracture but offer design principles for tough architected materials.

10.
Chem Rev ; 123(24): 14084-14118, 2023 12 27.
Article in English | MEDLINE | ID: mdl-37972301

ABSTRACT

Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.


Subject(s)
Tissue Adhesives , Biocompatible Materials , Technology
11.
Nat Methods ; 20(11): 1802-1809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857906

ABSTRACT

We develop soft and stretchable fatigue-resistant hydrogel optical fibers that enable optogenetic modulation of peripheral nerves in naturally behaving animals during persistent locomotion. The formation of polymeric nanocrystalline domains within the hydrogels yields fibers with low optical losses of 1.07 dB cm-1, Young's modulus of 1.6 MPa, stretchability of 200% and fatigue strength of 1.4 MPa against 30,000 stretch cycles. The hydrogel fibers permitted light delivery to the sciatic nerve, optogenetically activating hindlimb muscles in Thy1::ChR2 mice during 6-week voluntary wheel running assays while experiencing repeated deformation. The fibers additionally enabled optical inhibition of pain hypersensitivity in an inflammatory model in TRPV1::NpHR mice over an 8-week period. Our hydrogel fibers offer a motion-adaptable and robust solution to peripheral nerve optogenetics, facilitating the investigation of somatosensation.


Subject(s)
Optical Fibers , Optogenetics , Mice , Animals , Hydrogels , Motor Activity , Sciatic Nerve/physiology , Locomotion
12.
Proc Natl Acad Sci U S A ; 120(45): e2312751120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903260

ABSTRACT

We report in this work several unexpected experimental observations on evaporation from hydrogels under visible light illumination. 1) Partially wetted hydrogels become absorbing in the visible spectral range, where the absorption by both the water and the hydrogel materials is negligible. 2) Illumination of hydrogel under solar or visible-spectrum light-emitting diode leads to evaporation rates exceeding the thermal evaporation limit, even in hydrogels without additional absorbers. 3) The evaporation rates are wavelength dependent, peaking at 520 nm. 4) Temperature of the vapor phase becomes cooler under light illumination and shows a flat region due to breaking-up of the clusters that saturates air. And 5) vapor phase transmission spectra under light show new features and peak shifts. We interpret these observations by introducing the hypothesis that photons in the visible spectrum can cleave water clusters off surfaces due to large electrical field gradients and quadrupole force on molecular clusters. We call the light-induced evaporation process the photomolecular effect. The photomolecular evaporation might be happening widely in nature, potentially impacting climate and plants' growth, and can be exploited for clean water and energy technologies.

13.
Science ; 381(6658): 608-609, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37561863

ABSTRACT

Bioelectronic implants could use semiconductors that adhere to wet, dynamic tissues.


Subject(s)
Prostheses and Implants , Semiconductors , Tissue Adhesives , Humans , Animals , Swine
14.
Sensors (Basel) ; 23(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37514934

ABSTRACT

In recent years, grassland monitoring has shifted from traditional field surveys to remote-sensing-based methods, but the desired level of accuracy has not yet been obtained. Multi-temporal hyperspectral data contain valuable information about species and growth season differences, making it a promising tool for grassland classification. Transformer networks can directly extract long-sequence features, which is superior to other commonly used analysis methods. This study aims to explore the transformer network's potential in the field of multi-temporal hyperspectral data by fine-tuning it and introducing it into high-powered grassland detection tasks. Subsequently, the multi-temporal hyperspectral classification of grassland samples using the transformer network (MHCgT) is proposed. To begin, a total of 16,800 multi-temporal hyperspectral data were collected from grassland samples at different growth stages over several years using a hyperspectral imager in the wavelength range of 400-1000 nm. Second, the MHCgT network was established, with a hierarchical architecture, which generates a multi-resolution representation that is beneficial for grass hyperspectral time series' classification. The MHCgT employs a multi-head self-attention mechanism to extract features, avoiding information loss. Finally, an ablation study of MHCgT and comparative experiments with state-of-the-art methods were conducted. The results showed that the proposed framework achieved a high accuracy rate of 98.51% in identifying grassland multi-temporal hyperspectral which outperformed CNN, LSTM-RNN, SVM, RF, and DT by 6.42-26.23%. Moreover, the average classification accuracy of each species was above 95%, and the August mature period was easier to identify than the June growth stage. Overall, the proposed MHCgT framework shows great potential for precisely identifying multi-temporal hyperspectral species and has significant applications in sustainable grassland management and species diversity assessment.

15.
Nat Mater ; 22(7): 895-902, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37322141

ABSTRACT

Owing to the unique combination of electrical conductivity and tissue-like mechanical properties, conducting polymer hydrogels have emerged as a promising candidate for bioelectronic interfacing with biological systems. However, despite the recent advances, the development of hydrogels with both excellent electrical and mechanical properties in physiological environments is still challenging. Here we report a bi-continuous conducting polymer hydrogel that simultaneously achieves high electrical conductivity (over 11 S cm-1), stretchability (over 400%) and fracture toughness (over 3,300 J m-2) in physiological environments and is readily applicable to advanced fabrication methods including 3D printing. Enabled by these properties, we further demonstrate multi-material 3D printing of monolithic all-hydrogel bioelectronic interfaces for long-term electrophysiological recording and stimulation of various organs in rat models.


Subject(s)
Hydrogels , Polymers , Animals , Rats , Electric Conductivity , Printing, Three-Dimensional
16.
Adv Mater ; 35(38): e2301916, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269476

ABSTRACT

Broad adoption of magnetic soft robotics is hampered by the sophisticated field paradigms for their manipulation and the complexities in controlling multiple devices. Furthermore, high-throughput fabrication of such devices across spatial scales remains challenging. Here, advances in fiber-based actuators and magnetic elastomer composites are leveraged to create 3D magnetic soft robots controlled by unidirectional fields. Thermally drawn elastomeric fibers are instrumented with a magnetic composite synthesized to withstand strains exceeding 600%. A combination of strain and magnetization engineering in these fibers enables programming of 3D robots capable of crawling or walking in magnetic fields orthogonal to the plane of motion. Magnetic robots act as cargo carriers, and multiple robots can be controlled simultaneously and in opposing directions using a single stationary electromagnet. The scalable approach to fabrication and control of magnetic soft robots invites their future applications in constrained environments where complex fields cannot be readily deployed.

17.
Phys Rev E ; 107(2): L022601, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932538

ABSTRACT

Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class of impulsively excited surface instability that is driven by cycles of internal shock reflections.

18.
Nat Mater ; 22(2): 149-150, 2023 02.
Article in English | MEDLINE | ID: mdl-36732341

Subject(s)
Robotics , Muscles
19.
Nat Biomed Eng ; 7(4): 589-598, 2023 04.
Article in English | MEDLINE | ID: mdl-34400808

ABSTRACT

Neuroprosthetic hands are typically heavy (over 400 g) and expensive (more than US$10,000), and lack the compliance and tactile feedback of human hands. Here, we report the design, fabrication and performance of a soft, low-cost and lightweight (292 g) neuroprosthetic hand that provides simultaneous myoelectric control and tactile feedback. The neuroprosthesis has six active degrees of freedom under pneumatic actuation, can be controlled through the input from four electromyography sensors that measure surface signals from residual forearm muscles, and integrates five elastomeric capacitive sensors on the fingertips to measure touch pressure so as to enable tactile feedback by eliciting electrical stimulation on the skin of the residual limb. In a set of standardized tests performed by two individuals with transradial amputations, we show that the soft neuroprosthetic hand outperforms a conventional rigid neuroprosthetic hand in speed and dexterity. We also show that one individual with a transradial amputation wearing the soft neuroprosthetic hand can regain primitive touch sensation and real-time closed-loop control.


Subject(s)
Artificial Limbs , Touch , Humans , Touch/physiology , Feedback , Feedback, Sensory/physiology , Hand/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...