Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 131: 106318, 2023 02.
Article in English | MEDLINE | ID: mdl-36527992

ABSTRACT

Targeting sphingosine-1-phosphate receptor 2 (S1PR2) has been proved as a promising strategy to reverse 5-fluorouracil (5-FU) resistance. Here, we report the discovery of the novel JTE-013 derivative compound 37 h as a more effective S1PR2 antagonist to reverse 5-FU resistance in SW620/5-FU and HCT116DPD cells than JTE-013 and previously reported compound 5. Compound 37 h could effectively bind S1PR2 and reduce its expression, thus leading to decreased expression of JMJD3 and dihydropyrimidine dehydrogenase (DPD), while also increasing the level of H3K27me3 to decrease the degradation of 5-FU and thereby increase its intracellular concentration in SW620/5-FU, HCT116DPD, and L02 cells. Furthermore, compound 37 h showed good selectivity to other S1PRs and normal colon cell line NCM460. Western blot analysis demonstrated that compound 37 h could abrogate the FBAL-stimulated upregulation of DPD expression by S1PR2. Importantly, compound 37 h also showed favorable metabolic stability with a long half-life (t1/2) of 7.9 h. Moreover, compound 37 h significantly enhanced the antitumor efficacy of 5-FU in the SW620/5-FU animal model. Thus, the JTE-013-based derivative compound 37 h represents a promising lead compound for the development of novel 5-FU sensitizers for colorectal cancer (CRC) therapy.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Animals , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Sphingosine-1-Phosphate Receptors , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Dihydrouracil Dehydrogenase (NADP)/metabolism
2.
Eur J Med Chem ; 227: 113923, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34688013

ABSTRACT

Sphingosine-1-phosphate receptor 2 (S1PR2) has been identified as a brand-new GPCR target for designing antagonists to reverse 5-FU resistance. We herein report the structural optimization and structure-activity relationship of JTE-013 derivatives as S1PR2 antagonists. Compound 9d was the most potent S1PR2 antagonist (KD = 34.8 nM) among developed compounds. Here, compound 9d could significantly inhibit the expression of dihydropyrimidine dehydrogenase (DPD) to reverse 5-FU-resistance in HCT116DPD and SW620/5-FU cells. Further mechanism studies demonstrated that compound 9d not only inhibited S1PR2 but also affected the transcription of S1PR2. In addition, compound 9d also showed acceptable selectivity to normal cells (NCM460). Importantly, compound 9d with suitable pharmacokinetic properties could significantly reverse 5-FU-resistance in the HCT116DPD and SW620/5-FU xenograft models without obvious toxicity, in which the inhibition rates of 5-FU were increased from 23.97% to 65.29% and 27.23% to 60.81%, respectively. Further immunohistochemistry and western blotting analysis also demonstrated that compound 9d significantly decreases the expression of DPD in tumor and liver tissues. These results indicated that compound 9d is a promising lead compound to reverse 5-FU-resistance for colorectal cancer therapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Drug Design , Fluorouracil/pharmacology , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Animals , Antimetabolites, Antineoplastic/chemical synthesis , Antimetabolites, Antineoplastic/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fluorouracil/chemical synthesis , Fluorouracil/chemistry , Humans , Male , Mice , Mice, Nude , Molecular Docking Simulation , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Rats , Rats, Sprague-Dawley , Sphingosine-1-Phosphate Receptors/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...