Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1330075, 2024.
Article in English | MEDLINE | ID: mdl-38322825

ABSTRACT

Maire yew (Taxus mairei), an evergreen conifer, has high ornamental and medicinal value. The arils of this species has three different colors. However, the variation mechanisms of arils color formation remains unclear. Here, the gene expression and metabolite concentration were profiled for red (RTM), yellow (YTM), and purple (PTM) arils in different developmental stages. A total of 266 flavonoids and 35 carotenoids were identified. The predominant pigments identified in YTM were epiafzelechin, lutein, and ß-Cryptoxanthin, while malvidin-3,5-di-O-glucoside and apigenin played crucial roles in PTM. And significant differential expression was observed among the HCT, DFR, LAR, ANS, crtB, NCED, and CCoAOMT genes across different color arils. During the maturation of yellow arils, the upregulation of HCT was strongly correlated with the accumulation of epiafzelechin. The diminished expression of DFR, LAR, and ANS seemed to inhibit the production of delphinidin-3-O-rutinoside. The decrease in crtB expression and concurrent increase in NCED expression potentially regulate the heightened accumulation of lutein. Meanwhile, the accumulation of ß-cryptoxanthin appeared seemed to be positively influenced by NCED. As aril turning purple, the decreased expression of CCoAOMT seemed to facilitate the synthesis of apigenin. The substantial upregulation of DFR promoted the production of malvidin-3,5-di-O-glucoside. Additionally, the overexpression of MYBs may plays the important role in regulating the formation of different colored arils. In total, 14 genes were selected for qRT-PCR validation, the results indicated the reliability of the transcriptome sequences data. Our findings could provide valuable insight into the molecular breeding, development, and application of Maire yew resources.

2.
Natl Sci Rev ; 10(10): nwad176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37671331

ABSTRACT

It has long been established that plastic flow in the asthenosphere interacts constantly with the overlying lithosphere and plays a pivotal role in controlling the occurrence of geohazards such as earthquakes and volcanic eruptions. Unfortunately, accurately characterizing the direction and lateral extents of the mantle flow field is notoriously difficult, especially in oceanic areas where deployment of ocean bottom seismometers (OBSs) is expensive and thus rare. In this study, by applying shear wave splitting analyses to a dataset recorded by an OBS array that we deployed between mid-2019 and mid-2020 in the South China Sea (SCS), we show that the dominant mantle flow field has a NNW-SSE orientation, which can be attributed to mantle flow extruded from the Tibetan Plateau by the ongoing Indian-Eurasian collision. In addition, the results suggest that E-W oriented flow fields observed in South China and the Indochina Peninsula do not extend to the central SCS.

3.
Ecol Evol ; 13(8): e10374, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636866

ABSTRACT

Phellodendron has always been of great significance in promoting human health and ecological restoration. However, human activities and climate change have severely affected habitat, population dynamics and sustainable use of Phellodendron. Little is known about the geographical distribution pattern and their responses to climate change of Phellodendron. In order to reveal the impact of climate change on Phellodendron, we conducted a study based on natural distribution data of two species (297 occurrence points), 20 environmental factors, and an optimized MaxEnt model. Our results identified the main environmental factors influencing Phellodendron, predicted their potential geographical distribution, and assessed migration trends under climate change in China. Our analysis showed that Ph. amurense and Ph. chinense have potential suitable habitats of 62.89 × 104 and 70.71 × 104 km2, respectively. Temperature and precipitation were found to play an essential role in shaping the present geographical distribution of Phellodendron populations. Based on two future climate scenarios, we forecasted that the potential suitable habitat of Ph. amurense would decrease by 12.52% (SSP245) and increase by 25.28% (SSP585), while Ph. chinense would decline by 19.61% (SSP245) and 15.78% (SSP585) in the late-21st century. The potential suitable habitats of Ph. amurense and Ph. chinense would shift to northward and westward, respectively. Hydrothermal change was found to be the primary driver of the suitable habitat of Phellodendron populations in the future. We recommend establishing nature reserves for existing Phellodendron populations, especially Ph. chinense. Our study provided a practical framework for the impact of climate change on the suitable habitat of Phellodendron species and guided regional cultivation, long-term conservation, and sustainable use.

SELECTION OF CITATIONS
SEARCH DETAIL