Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1367116, 2024.
Article in English | MEDLINE | ID: mdl-38533337

ABSTRACT

The quality of raw camel milk is affected by its bacterial composition and diversity. However, few studies have investigated the bacterial composition and diversity of raw camel milk. In this study, we obtained 20 samples of camel milk during spring and summer in Urumqi and Hami, Xinjiang, China. Single-molecule real-time sequencing technology was used to analyze the bacterial community composition. The results revealed that there were significant seasonal differences in the bacterial composition and diversity of camel milk. Overall, Epilithonimonas was the most abundant bacterial genus in our samples. Through the annotated genes inferred by PICRUSt2 were mapped against KEGG database. Non-parametric analysis of the bacterial community prediction function revealed a strong bacterial interdependence with metabolic pathways (81.83%). There were clear regional and seasonal differences in level 3 metabolic pathways such as fat, vitamins, and amino acids in camel milk. In addition, we identified lactic acid bacteria in camel milk with antibacterial and anti-tumor activities. Our findings revealed that camel milk from Xinjiang had serious risk of contamination by psychrophilic and pathogenic bacteria. Our research established a crucial theoretical foundation for ensuring the quality and safety of camel milk, thereby contributing significantly to the robust growth of China's camel milk industry.

2.
Microbiol Res ; 283: 127694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520836

ABSTRACT

Tomato fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a highly destructive disease, resulting in severe economic losses of global tomato production annually. An eco-friendly alternative to chemical fungicide using biological control agents (BCAs) is urgently needed. Here, Bacillus siamensis QN2MO-1 was isolated from Noli fruit and had a strong antagonistic activity against Fol in vitro and in vivo. Strain QN2MO-1 also exhibited a broad-spectrum antifungal activity against the selected 14 phytopathogenic fungi. The crude protein produced by strain QN2MO-1 could inhibit the spore germination of Fol and destroy the spore structure. It was closely related with the generation of chitinase and ß-1,3-glucanase secreted by strain QN2MO-1. In a pot experiment, the application of B. siamensis QN2MO-1 effectively alleviated the yellowing and wilting symptoms of tomato plants. The disease index and incidence rate were decreased by 72.72% and 80.96%, respectively. The rhizospheric soil in tomato plants owed a high abundance of microbial community. Moreover, strain QN2MO-1 also enhanced the plant growth and improved the fruit quality of tomato. Therefore, B. siamensis QN2MO-1 will be explored as a potential biocontrol agent and biofertilizer.


Subject(s)
Bacillus , Fusarium , Solanum lycopersicum , Fruit , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
J Vet Res ; 67(2): 161-167, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38143824

ABSTRACT

Introduction: Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. Material and Methods: A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. Results: The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. Conclusion: The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria.

4.
Front Plant Sci ; 14: 1289959, 2023.
Article in English | MEDLINE | ID: mdl-37941669

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding ß-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.

5.
Sci Total Environ ; 903: 166645, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37657542

ABSTRACT

Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.

6.
J Med Chem ; 66(14): 9866-9880, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37428137

ABSTRACT

Molecular complexity plays an increasingly important role in the modern pharmaceutical industry. Setting up multiple stereogenic centers in privileged substructures may give rise to improved or even unprecedented bioactivities; however, this area remains largely unexplored due to the tremendous synthetic challenges. Herein, we report a series of multisubstituted pyrrolidines with four continuous stereogenic centers, including up to two aza-QSCs (quaternary stereogenic centers). Systematic evaluations, including phenotypic screening, molecular docking, molecular dynamics, bioinformatics, and bioactivity analysis, have been performed to screen entities with pharmacological properties of interest. Among them, compound 4m with two QSCs was identified to be a potent antiproliferation agent through disturbing mitosis exit, and the presence of QSCs was found to be crucial for anticancer efficacy. This work illustrates that the introduction of QSCs in privileged scaffolds not only helps to expand the unpatented chemical space but also provides new opportunities for the discovery of novel therapeutic agents.


Subject(s)
Pyrrolidines , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Stereoisomerism , Molecular Docking Simulation
7.
Front Microbiol ; 14: 1159534, 2023.
Article in English | MEDLINE | ID: mdl-37362932

ABSTRACT

Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 µg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.

8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768952

ABSTRACT

Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana (Musa spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.


Subject(s)
Musa , Transcriptome , Gene Expression Regulation, Plant , Plant Breeding , Gene Expression Profiling , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Oral Dis ; 29(1): 105-115, 2023 Jan.
Article in English | MEDLINE | ID: mdl-33872442

ABSTRACT

Recently, lncRNAs are associated with the progression and development of various cancers. We aimed to explore the effects of lncRNA SNHG1 on the proliferation, apoptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) cells. Quantitative real-time PCR (RT-qPCR) was used for measurement of SNHG1 in OSCC cells. Cell proliferation, apoptosis, migration, and invasion were detected by CCK-8 assay, flow cytometry, Cell Death Detection ELISA PLUS kit, and transwell assays. Dual-luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to clarify the relationship between SNHG1 and miR-186. SNHG1 was overexpressed in OSCC cells. SNHG1 silencing prevented cell proliferation and increased the incidence of apoptosis, DNA fragments, cleaved-caspase 3, and Bax protein levels. Cell migration and invasion were reduced after SNHG1 deletion, and MMP2 and MMP9 protein levels were decreased. SNHG1 overexpression promoted cell survival, migration, and invasion, reduced DNA fragments formation. Mechanistically, we demonstrated that SNHG1 could directly bind to miR-186 and positively regulated α1, 6-fucosyltransferase (FUT8) level. Functional investigation showed that miR-186 depletion reversed the roles of SNHG1 silencing in cell proliferation, apoptosis, and migration. Taken together, our findings illuminated that SNHG1 regulated cell proliferation, migration, and invasion by sponging miR-186 to depress FUT8 expression.


Subject(s)
Fucosyltransferases , MicroRNAs , Mouth Neoplasms , RNA, Long Noncoding , Squamous Cell Carcinoma of Head and Neck , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Fucosyltransferases/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
10.
J Agric Food Chem ; 70(40): 12784-12795, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36170206

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 µg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.


Subject(s)
Biological Products , Fungicides, Industrial , Fusarium , Musa , Streptomyces , Agrochemicals , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Fusarium/genetics , Gene Expression Profiling , Guanidines , Mitochondria , Musa/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Soil , Tricarboxylic Acids
11.
Front Oncol ; 12: 967360, 2022.
Article in English | MEDLINE | ID: mdl-35982975

ABSTRACT

Purpose: To accurately assess disease progression after Stereotactic Ablative Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a combined predictive model based on pre-treatment CT radiomics features and clinical factors was established. Methods: This study retrospectively analyzed the data of 96 patients with early-stage NSCLC treated with SABR. Clinical factors included general information (e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-treatment lesion status (e.g. diameter, location, pathological type, T stage), radiation parameters (biological effective dose, BED), the type of peritumoral radiation-induced lung injury (RILI). Independent risk factors were screened by logistic regression analysis. Radiomics features were extracted from pre-treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for the dimensionality reduction and feature selection. According to the weight coefficient of the features, the Radscore was calculated, and the radiomics model was constructed. Multiple logistic regression analysis was applied to establish the combined model based on radiomics features and clinical factors. Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate the model's diagnostic efficiency and clinical practicability. Results: With the median follow-up of 59.1 months, 29 patients developed progression and 67 remained good controlled within two years. Among the clinical factors, the type of peritumoral RILI was the only independent risk factor for progression (P< 0.05). Eleven features were selected from 1781 features to construct a radiomics model. For predicting disease progression after SABR, the Area Under the Curve (AUC) of training and validation cohorts in the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98), and AUC of training and validation cohorts in the combined model were 0.88 (95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the combined models have good prediction efficiency in the training and validation cohorts. Still, DeLong test shows that there is no difference between them. Conclusions: Compared with the clinical model, the radiomics model and the combined model can better predict the disease progression of early-stage NSCLC after SABR, which might contribute to individualized follow-up plans and treatment strategies.

12.
Front Microbiol ; 13: 840670, 2022.
Article in English | MEDLINE | ID: mdl-35633704

ABSTRACT

Staphylococcus aureus (S. aureus) is one of the main pathogens in different raw milk and dairy products, which may lead to economic losses. Staphylococcus aureus is a significant and costly public health concern because it may enter the human food chain and contaminate milk causing foodborne illness. This study aimed to investigate the prevalence, antimicrobial susceptibility and virulence genes of S. aureus in raw milks. In total, 125 raw milk samples collected from goat (n = 50), buffalo (n = 25), camel (n = 25), and yak (n = 25) were collected from 5 provinces in China in 2016. Out of 125 samples, 36 (28.8%) S. aureus were isolated (16 from goat, 9 from buffalo, 6 from camel, and 5 from yak). Out of 36 S. aureus, 26 strains (26/36, 72.2%) showed antibiotics resistance, and 6 strains isolated from goats were identified as methicillin-resistant S. aureus (MRSA). The antimicrobial resistance against Penicillin G, tetracycline and gentamicin was 50% (18/36), 41.7% (15/36), and 36.1% (13/36), respectively. 19 S. aureus (52.8%) were considered as multidrug resistant. The highest prevalence of resistant S. aureus was observed in goat milk (13/36, 36.1%). Among the 36 strains, 16 isolates harbored three or more resistant genes. The resistance genes were detected in 25 S. aureus, including 13 strains in goat, 5 strains in buffalo, 4 strains in camel, and 3 strains in yak. Among the 26 resistant strains, 61.5% of isolates harbored three or more resistant genes. The resistance genes were detected in 25 S. aureus, including 13 strains in goat milk, 5 strains in buffalo milk, 4 strains in camel milk, and 3 strains in yak milk. The most predominant resistance genes were blaZ (18/26, 69.2%), aac6'-aph2″ (13/26, 50.0%), and tet(M) (10/26, 38.5%). The mecA, ant(6)-Ia and fexA gene were only detected in S. aureus from goat milk. The most predominant toxin gene were sec (8/26, 30.8%). The majority of S. aureus were multidrug resistant and carried multiple virulence genes, which may pose potential risk to public health. Our findings indicated that the prevalence and antimicrobial resistance of S. aureus was a serious concern in different raw milks in China, especially goat milks.

13.
Phytopathology ; 112(9): 1877-1885, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35471064

ABSTRACT

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most disastrous fungal diseases. Biological control is a promising strategy for controlling Fusarium wilt of banana. To explore endophytic actinomycetes as biocontrol resources against Foc TR4, antagonistic strains were isolated from different tissues of medicinal plants. Here, a total of 144 actinomycetes were isolated and belonged to Nonomuraea, Kitasatospora, and Streptomyces. Forty-three isolates exhibited antifungal activities against Foc TR4. The strain labeled with 5-4 isolated from roots of Piper austrosinense had a broad-spectrum antifungal activity by the production of chitinase and ß-1,3-glucanase and was identified as Streptomyces hygroscopicus subsp. hygroscopicus 5-4. Furthermore, disease index of banana wilt was significantly reduced by application of strain 5-4 in comparison with application of Foc TR4 alone. Exogenous application of strain 5-4 increased the expression levels of defense genes such as (PAL), peroxidase (POD), pathogenesis-related protein 1 (PR-1), hydrolytic enzymes (ß-1,3-glucanase), lysin motif receptor kinase 1 (LYK-1), and mitogen-activated protein kinase 1 (MPK-1). The antifungal mechanism assay demonstrated that extracts of strain 5-4 inhibited spore gemination and hyphal growth of Foc TR4, and caused abnormally swollen, deformity, and rupture of Foc TR4 hypha. Thus, S. hygroscopicus subsp. hygroscopicus 5-4 could be used as a potential biological agent for controlling Fusarium wilt of banana.


Subject(s)
Fusarium , Musa , Streptomyces , Antifungal Agents/pharmacology , Fusarium/genetics , Gene Expression Profiling , Musa/microbiology , Plant Diseases/microbiology , Streptomyces/genetics
14.
Appl Microbiol Biotechnol ; 106(4): 1633-1649, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35141868

ABSTRACT

Most commercial banana cultivars are highly susceptible to Fusarium wilt caused by soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4). Biological control using antagonistic microorganism has been considered as an alternative method to fungicide. Our previous study showed that Streptomyces sp. SCA3-4 T had a broad-spectrum antifungal activity from the rhizosphere soil of Opuntia stricta in a dry hot valley. Here, the sequenced genome of strain SCA3-4 T contained 6614 predicted genes with 72.38% of G + C content. A polymorphic tree was constructed using the multilocus sequence analysis (MLSA) of five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). Strain SCA3-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T with 71% of bootstrap. Average nucleotide identity (ANI) values between genomes of strain SCA3-4 T and S. mobaraensis NBRC 13819 T was 85.83% below 95-96% of the novel species threshold, and named after Streptomyces sichuanensis sp. nov. The type strain is SCA3-4 T (= GDMCC 4.214 T = JCM 34964 T). Genomic analysis revealed that strain SCA3-4 T contained 36 known biosynthetic gene clusters of secondary metabolites. Antifungal activity of strain SCA3-4 T was closely associated with the production of siderophore and its extracts induced the apoptosis of Foc TR4 cells. A total of 12 potential antifungal metabolites including terpenoids, esters, acid, macrolides etc. were obtained by the gas chromatography-mass spectrometry (GC-MS). Greenhouse experiment indicated that strain SCA3-4 T could significantly inhibit infection of Foc TR4 in the roots and corms of banana seedlings and reduce disease index. Therefore, strain SCA3-4 T is an important microbial resource for exploring novel natural compounds and developing biopesticides to manage Foc TR4. KEY POINTS: • Strain SCA3-4 T was identified as a novel species of Streptomyces. • Siderophore participates in the antifungal regulation. • Secondary metabolites of strain SCA3-4 T improves the plant resistance to Foc TR4.


Subject(s)
Fusarium , Musa , Streptomyces , Antifungal Agents/pharmacology , Fusarium/genetics , Gene Expression Profiling , Musa/genetics , Musa/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/genetics
15.
Plant Dis ; 106(1): 254-259, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34433317

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a disastrous fungal disease. Foc tropical race 4 (Foc TR4) infects almost all banana cultivars. Use of chemical fungicides caused serious environment pollution. Biological control with antagonistic microbes is a promising strategy for controlling Foc TR4. Here, strain WHL7 isolated from marine soft coral exhibited a high antifungal activity against Foc TR4. Based on the morphological and physicochemical profiles as well as the phylogenetic tree, the strain was assigned to Streptomyces sp. Fermentation broth of Streptomyces sp. WHL7 significantly increased the resistance of banana plantlets to Foc TR4 in the pot experiment. Analysis of antifungal mechanism showed that strain WHL7 extracts inhibited spore germination and mycelial growth of Foc TR4, and destroyed cell integrity and ultrastructure. Hence, Streptomyces sp. WHL7 is an important bioresource for exploring novel natural products and biofertilizer to manage Foc TR4.


Subject(s)
Anthozoa , Biological Control Agents , Fusarium , Musa , Plant Diseases , Streptomyces , Animals , Anthozoa/microbiology , Fusarium/pathogenicity , Gene Expression Profiling , Musa/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/physiology
16.
J Vet Res ; 66(4): 581-590, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36846045

ABSTRACT

Introduction: Streptococcus agalactiae is an important zoonotic pathogen that affects milk production and quality and poses a threat to public health. Treatment of infections with this bacterium exploits antimicrobials, to which the resistance of S. agalactiae is a growing problem. Addressing the possibility of a correlation between this pathogen's genetic factors for antimicrobial resistance and virulence, this study attempted to identify the relevant genes. Material and Methods: Antimicrobial resistance of S. agalactiae isolated from 497 Chinese bovine mastitic milk samples was detected by the broth microdilution method. Eight drug resistance genes and eleven virulence genes were detected using PCR. Results: Streptococcus agalactiae was 100% susceptible to rifampicin and vancomycin, 93.33% susceptible to sulfisoxazole and sulfamethoxazole, but 100% resistant to ≥3 of the 16 antimicrobial agents, thereby being multidrug resistant, with resistance to oxacillin, tetracycline, erythromycin, clindamycin, and gentamicin being common. The ermB, ermA and lnuA genes were carried by 73.33%, 66.67% and 60.00% of the strains, respectively. The carriage rates of the glnA, clyE, hylB, bibA, iagA, and fbsA virulence genes were greater than 40%, lmb and bac were not observed in any strain, and glnA+hylB+bibA+iagA+fbsA+clyE combined virulence gene patterns were the most commonly detected. Conclusion: Antimicrobial resistance of S. agalactiae is still a great concern for cattle health in China, and multidrug resistance coupled with the high positive rates of this bacterium's strains for virulence genes indicates the importance of S. agalactiae surveillance and susceptibility tests.

17.
J Am Chem Soc ; 143(18): 7088-7095, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33938219

ABSTRACT

Here, we report the first asymmetric total synthesis of (+)-talassimidine and (+)-talassamine, two hetidine-type C20-diterpenoid alkaloids. A highly regio- and diastereoselective 1,3-dipolar cycloaddition of an azomethine ylide yielded a chiral tetracyclic intermediate in high enantiopurity, thus providing the structural basis for asymmetric assembly of the hexacyclic hetidine skeleton. In this key step, the introduction of a single chiral center induces four new continuous chiral centers. Another key transformation is the dearomative cyclopropanation of the benzene ring and subsequent SN2-like ring opening of the resultant cyclopropane ring with water as a nucleophile, which not only establishes the B ring but also precisely installs the difficult-to-achieve equatorial C7-OH group.


Subject(s)
Alkaloids/chemical synthesis , Diterpenes/chemical synthesis , Alkaloids/chemistry , Diterpenes/chemistry , Molecular Conformation
18.
Front Microbiol ; 11: 1712, 2020.
Article in English | MEDLINE | ID: mdl-32903773

ABSTRACT

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases, severely limiting the development of banana industry. Especially, Foc tropical race 4 (Foc TR4) can infect and destroy almost all banana cultivars. Until now, there is still a lack of an effective method for controlling fusarium wilt. A biocontrol strategy using Actinobacteria is considered as a promising method for management of disease and pest. In this study, 229 Actinobacteria were isolated from rhizosphere soil samples of a primitive ecological mountain. An actinobacterium strain marked with YYS-7 exhibited a high antifungal activity against Foc TR4. Combining the physiological and biochemical characteristics as well as alignment of the 16S rRNA sequence, the strain YYS-7 was assigned to Streptomyces sp. The crude extracts of Streptomyces sp. YYS-7 obviously inhibited the mycelial growth of Foc TR4. The cell integrity and ultrastructure were seriously destroyed. In addition, Streptomyces sp. YYS-7 and crude extracts also showed a broad-spectrum antifungal activity against the selected seven phytopathogenic fungi. A gas chromatography-mass spectrometry (GC-MS) was used to predict the antifungal metabolites. A total of eleven different compounds were identified, including phenolic compounds, hydrocarbons, esters and acids. In the pot experiment, the crude extracts can significantly improve the banana plant's resistance to Foc TR4. Hence, Streptomyces sp. YYS-7 will be a potential biocontrol agent for the biofertilizer exploitation and the discovery of new bioactive substances.

19.
Bioresour Technol ; 310: 123381, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32361643

ABSTRACT

A new isolated cellulolytic bacterium from a soft coral was named as Fictibacillus sp YS-26 based on the morphologic and molecular characteristics. It can degrade different lignocellulosic agricultural residues by producing cellulolytic enzymes, α-amylase, protease, pectinase and xylanase. Especially, Fictibacillus sp. YS-26 exhibited the highest cellulolytic activities in the soybean meal medium. By contrast, the fermentation broth of Fictibacillus sp. YS-26 significantly enhanced utilization efficiency of carboxylic acids and polymers by soil microorganisms as well as the microbial metabolism function and community diversity in rhizosphere soil of banana plantlets. The fermentation broth also improved soil characters and increased the growth of banana plantlets. We found that soil total nitrogen and electrical conductivity had a positive relationship with the increase of microbial diversity. Hence, Fictibacillus sp. YS-26 will be a promising candidate for biodegradating lignocellulosic biomass and improving the soil microbial diversity.


Subject(s)
Microbiota , Rhizosphere , Carbon , Lignin , Soil , Soil Microbiology
20.
Front Microbiol ; 11: 610698, 2020.
Article in English | MEDLINE | ID: mdl-33552022

ABSTRACT

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is a disastrous soil-borne fungal disease. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Until now, there is a shortage of safety and effective control methods and commercial banana cultivars with a resistance against Foc TR4. Biocontrol using environmentally friendly microbes is a promising strategy for the management of Foc TR4. Here, a strain 5-10, newly isolated from a medicinal plant (Curculigo capitulata), exhibited a high antifungal activity against Foc TR4. Combing the morphological characteristics and molecular identification, strain 5-10 was classified as a Streptomyces genus. The sequenced genome revealed that more than 39 gene clusters were involved in the biosynthesis of secondary metabolites. Some multidrug resistance gene clusters were also identified such as mdtD, vatB, and vgaE. To improve the anti-Foc TR4 activity of the strain 5-10 extracts, an optimization method of fermentation broth was established. Antifungal activity increased by 72.13% under the fermentation system containing 2.86 g/L of NaCl and 11.57% of inoculation amount. After being treated with the strain 5-10 extracts, the Foc TR4 hyphae shrinked, deformed, and ruptured. The membrane integrity and cell ultrastructure incurred irreversible damage. Streptomyces sp. 5-10 extracts play a fungicidal role in Foc TR4. Hence, Streptomyces sp. 5-10 will be a potential biocontrol agent to manage fungal diseases by exploring the microbial fertilizer.

SELECTION OF CITATIONS
SEARCH DETAIL
...