Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 396, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922447

ABSTRACT

The human gut microbiota refers to a diverse community of microorganisms that symbiotically exist in the human intestinal system. Altered microbial communities have been linked to many human pathologies. However, there is a lack of rapid and efficient methods to assess gut microbiota signatures in practice. To address this, we established an appraisal system containing 45 quantitative real-time polymerase chain reaction (qPCR) assays targeting gut core microbes with high prevalence and/or abundance in the population. Through comparative genomic analysis, we selected novel species-specific genetic markers and primers for 31 of the 45 core microbes with no previously reported specific primers or whose primers needed improvement in specificity. We comprehensively evaluated the performance of the qPCR assays and demonstrated that they showed good sensitivity, selectivity, and quantitative linearity for each target. The limit of detection ranged from 0.1 to 1.0 pg/µL for the genomic DNA of these targets. We also demonstrated the high consistency (Pearson's r = 0.8688, P < 0.0001) between the qPCR method and metagenomics next-generation sequencing (mNGS) method in analyzing the abundance of selected bacteria in 22 human fecal samples. Moreover, we quantified the dynamic changes (over 8 weeks) of these core microbes in 14 individuals using qPCR, and considerable stability was demonstrated in most participants, albeit with significant individual differences. Overall, this study enables the simple and rapid quantification of 45 core microbes in the human gut, providing a promising tool to understand the role of gut core microbiota in human health and disease. KEY POINTS: • A panel of original qPCR assays was developed to quantify human gut core microbes. • The qPCR assays were evaluated and compared with mNGS using real fecal samples. • This method was used to dynamically profile the gut core microbiota in individuals.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Real-Time Polymerase Chain Reaction , Humans , Real-Time Polymerase Chain Reaction/methods , Gastrointestinal Microbiome/genetics , Feces/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sensitivity and Specificity , DNA Primers/genetics , DNA, Bacterial/genetics
2.
PLoS Negl Trop Dis ; 18(5): e0012167, 2024 May.
Article in English | MEDLINE | ID: mdl-38701065

ABSTRACT

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, is a zoonotic disease that poses considerable threats to human health. Nucleic acid tests are crucial for plague surveillance and the rapid detection of Y. pestis. However, inhibitors in complex samples such as soil and animal tissues often hamper nucleic acid detection, leading to a reduced rate of identifying low concentrations of Y. pestis. To address this challenge, we developed a sensitive and specific droplet digital polymerase chain reaction (ddPCR) assay for detecting Y. pestis DNA from soil and animal tissue samples. METHODS: Three genes (ypo2088, caf1, and pla) from Y. pestis were used to develop a multi-target ddPCR assay. The limits of detection (LoD), reproducibility, and specificity were assessed for bacterial genomic DNA samples. The ability of the assay to detect low concentrations of Y. pestis DNA from simulated soil and mouse liver tissue samples was respectively evaluated and compared with that of quantitative real-time PCR (qPCR). RESULTS: The results showed that the ddPCR LoDs ranged from 6.2 to 15.4 copies/reaction for the target genes, with good reproducibility and high specificity for Y. pestis. By testing 130 soil and mouse liver tissue samples spiked with Y. pestis, the ddPCR assay exhibited a better sensitivity than that of the qPCR assay used in the study, with LoDs of 102 colony forming units (CFU)/100 mg soil and 103 CFU/20 mg liver. Moreover, the assay presented good quantitative linearity (R2 = 0.99) for Y. pestis at 103-106 CFU/sample for soil and liver samples. CONCLUSION: The ddPCR assay presented good performance for detecting Y. pestis DNA from soil and mouse tissue samples, showing great potential for improving the detection rate of low concentrations of Y. pestis in plague surveillance and facilitating the early diagnosis of plague cases.


Subject(s)
Plague , Sensitivity and Specificity , Soil Microbiology , Yersinia pestis , Yersinia pestis/genetics , Yersinia pestis/isolation & purification , Animals , Plague/diagnosis , Plague/microbiology , Mice , Polymerase Chain Reaction/methods , DNA, Bacterial/genetics , Reproducibility of Results , Bacterial Proteins/genetics , Liver/microbiology , Limit of Detection , Humans
3.
Appl Opt ; 63(10): 2561, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38568536

ABSTRACT

This erratum corrects errors in Fig. 4(b) of the original paper, Appl. Opt.63, 1847 (2023)APOPAI0003-693510.1364/AO.510265. This correction does not affect any of the results or conclusions of the aforementioned paper.

4.
Appl Opt ; 63(7): 1847-1853, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437289

ABSTRACT

A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of a laser's linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the coherence envelope spectrum serves as a basis for estimating the laser's linewidth. By creating a plot of the coefficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the linewidth of lasers characterized as narrow or ultranarrow.

5.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38501473

ABSTRACT

We establish a theoretical model to analyze the photoassociative spectroscopy of 85Rb 133Cs molecules in the (3)3Σ+ state. The vibrational energy, spin-spin coupling constant, and hyperfine interaction constant of the (3)3Σ+ state are determined based on nine observed vibrational levels. Consequently, the Rydberg-Klein-Rees potential energy curve of the (3)3Σ+ state is obtained and compared with the ab initial potential energy curve. Our model can be adopted to analyze the photoassociative spectroscopy of other heteronuclear alkali-metal diatomic molecules in the (3)3Σ+ state.

6.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338646

ABSTRACT

Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.


Subject(s)
Brassica , Proteomics , Gene Expression Profiling , Transcriptome , Brassica/metabolism , Nitrogen/metabolism
7.
Phytomedicine ; 123: 155160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984122

ABSTRACT

BACKGROUND: Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown. OBJECTIVE: The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action. METHODS: The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays. RESULTS: mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion. CONCLUSION: Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Hypericum , Female , Humans , Animals , Rats , Tandem Mass Spectrometry , Metabolomics , Kidney , Ovariectomy , Plant Oils , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Nitric Oxide Synthase Type III
8.
J Org Chem ; 89(1): 183-190, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38141025

ABSTRACT

A Sb,N ligand (L-Sb) for Pd-catalyzed double N-arylation of primary amines was developed. This trivalent ligand L-Sb, containing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine skeleton and stable under air and moisture, could be synthesized facilely on a gram scale from chlorostibine (1) and cyclopentylmagnesium bromide. L-Sb showed excellent catalytic performance in Pd2(dba)3-catalyzed double N-arylation of 2,2'-dibromo-1,1'-biphenyl (2) with primary amines (3), affording functionalized carbazoles in good yields. This Pd2(dba)3/L-Sb-catalyzed double N-arylation, the first example of the application of trivalent organostibines as a ligand in N-arylation, featured the following advantages: small catalyst loading, wide functional group tolerance, good yields, and ease of gram-scale synthesis.

9.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Article in English | MEDLINE | ID: mdl-38089818

ABSTRACT

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Subject(s)
Aspartate Aminotransferases , Plague , Yersinia pestis , Codon, Nonsense/metabolism , Phylogeny , Plague/microbiology , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/genetics
10.
Microorganisms ; 11(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004812

ABSTRACT

The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.

11.
Appl Opt ; 62(27): 7169-7174, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37855572

ABSTRACT

We demonstrate a simple, low-cost, and well-performing optical phase-locked loop (OPLL) circuit with ADF4007 as the phase frequency detector chip to achieve frequency and phase locking of two semiconductor lasers in both short and long terms. The measured short term performances, determined by fast feedback, show that the spectral width of the beat signal is low, around 1 Hz, and the residual phasing error is 0.04r a d 2. The measured long term performances, determined by slow feedback, show that the drift of the central frequency of the beat signal is within 1.1(1) Hz in 2 h, and the derived Allan deviation is less than 0.4 Hz within all integration times of up to 1000 s. The phase noise measurement shows a suppression of phase noise of the beat signal from free running to closed-loop OPLLs in a Fourier frequency of 10 Hz-20 kHz. These measurements show that the OPLL circuit we modified can fit most scientific experiments requiring a fixed frequency difference and phase coherence.

12.
Chin Med ; 18(1): 103, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598173

ABSTRACT

BACKGROUND: Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS: Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS: In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION: In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.

13.
Front Plant Sci ; 14: 1212528, 2023.
Article in English | MEDLINE | ID: mdl-37502704

ABSTRACT

Glossiness is an important quality-related trait of Chinese cabbage, which is a leafy vegetable crop in the family Brassicaceae. The glossy trait is caused by abnormal cuticular wax accumulation. In this study, on the basis of a bulked segregant analysis coupled with next-generation sequencing (BSA-seq) and fine-mapping, the most likely candidate gene responsible for the glossy phenotype of Chinese cabbage was identified. It was subsequently named Brcer2 because it is homologous to AtCER2 (At4g24510). A bioinformatics analysis indicated a long interspersed nuclear element 1 (LINE-1) transposable element (named BrLINE1-RUP) was inserted into the first exon of Brcer2 in HN19-G via an insertion-mediated deletion mechanism, which introduced a premature termination codon. Gene expression analysis showed that the InDel mutation of BrCER2 reduced the transcriptional expression levels of Brcer2 in HN19-G. An analysis of cuticular waxes suggested that a loss-of-function mutation to BrCER2 in Chinese cabbage leads to a severe decrease in the abundance of very-long-chain-fatty-acids (> C28), resulting in the production of a cauline leaf, inflorescence stem, flower, and pistil with a glossy phenotype. These findings imply the insertion of the LINE-1 transposable element BrLINE1-RUP into BrCER2 can modulate the waxy traits of Chinese cabbage plants.

14.
Anal Biochem ; 674: 115184, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37285946

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect and mechanism of the traditional Chinese medicine Saposhnikovia divaricata (Trucz.) Schischk in rats with complete Freund's adjuvant-induced rheumatoid arthritis (RA). METHODS: The chemical targets and RA targets of Saposhnikovia divaricata (Trucz.) Schischk were acquired by the network pharmacological method. The complete Freund's adjuvant-induced rat RA model was used to further explore the mechanism of Saposhnikovia divaricata (Trucz.) Schischk in improving RA. Pathological changes in the volume of toes, body weight and synovial tissues of joints as well as serum inflammatory factor levels before and after the intervention of Saposhnikovia divaricata (Trucz.) Schischk were investigated. The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS: Saposhnikovia divaricata (Trucz.) Schischk administration increased body weight, mitigated foot swelling and downregulated inflammatory cytokine levels in model rats. The histopathology showed that treatment with Saposhnikovia divaricata (Trucz.) Schischk can induce inflammatory cell infiltration and synovial hyperplasia and obviously reduce cartilage injuries, thus improving arthritis symptoms in rats. According to the network pharmacology-metabonomics association analysis results, the purine metabolic signaling pathway might be the key pathway for RA intervention with Saposhnikovia divaricata (Trucz.) Schischk. Targeted metabonomics, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT‒PCR) assays showed that the recombinant adenosine deaminase (ADA) mRNA expression level and metabolic level of inosine in Saposhnikovia divaricata (Trucz.) Schischk administration group were lower than those of the model group. This reflected that Saposhnikovia divaricata (Trucz.) Schischk could improve RA by downregulating ADA mRNA expression levels and the metabolic level of inosine in the purine signaling pathway. CONCLUSION: Based on the "component-disease-target" association analysis, this study concludes that Saposhnikovia divaricata (Trucz.) Schischk improves complete Freund's adjuvant-induced RA symptoms in rats mainly by downregulating ADA mRNA expression levels in the purine metabolic signaling pathway, mitigating foot swelling, improving the levels of serum inflammatory factors (IL-1ß, IL-6 and TNF-α), and decreasing the ADA protein expression level to intervene in purine metabolism.


Subject(s)
Apiaceae , Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Freund's Adjuvant/adverse effects , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , RNA, Messenger , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced
15.
Hortic Res ; 10(4): uhad029, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090092

ABSTRACT

Glucosinolates (GSLs) are a group of sulfur-containing secondary metabolites, which are abundant in Brassica vegetables. GSL breakdown products (GBPs), especially isothiocyanates (ITCs) benefit human health. Chinese kale is a native Brassica vegetable in China, and its sprouts are rich in GSLs and nutritional substances. ITCs are the predominant GBPs while alternative products are formed in the presence of specifier proteins. However, fewer ITCs are formed in the sprouts. Epithiospecifier (ESP) promotes the formation of epithionitriles at the expense of ITCs in Arabidopsis, but a systematic study of different isoforms of ESPs in most vegetables is still missing. In this study, changes in the content of GBPs and the precursor GSLs, as well as thiols per plant were monitored during sprout development. The proportions of epithionitriles and ITCs in total GBPs were found to be increased and decreased, respectively. RNA-seq showed enhanced expression of numerous genes involved in GSLs biosynthesis and degradation, as well as sulfur assimilation in sprouts compared to seeds. Four copies of BoESPs were isolated and BoESP2 was the most abundant isoform. Generally, transcription of BoESPs showed a strong response to abscisic acid and gibberellin, and consequently epithionitriles increased under these treatments. Knockdown of BoESP2 expression through virus-induced gene silencing system could effectively increase total ITCs and decrease total epithionitriles. Overall, dynamic GSL metabolic flux exists in the sprouting period, and the expression of BoESPs determines the pattern of GBPs, suggesting that improving the health-promoting ITCs in Chinese kale sprouts through manipulating BoESPs by metabolic engineering is feasible.

16.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903983

ABSTRACT

Glucosinolates are secondary plant metabolites that are part of the plant's defense system against pathogens and pests and are activated via enzymatic degradation by thioglucoside glucohydrolases (myrosinases). Epithiospecifier proteins (ESPs) and nitrile-specifier proteins (NSPs) divert the myrosinase-catalyzed hydrolysis of a given glucosinolate to form epithionitrile and nitrile rather than isothiocyanate. However, the associated gene families have not been explored in Chinese cabbage. We identified three ESP and fifteen NSP genes randomly distributed on six chromosomes in Chinese cabbage. Based on a phylogenetic tree, the ESP and NSP gene family members were divided into four clades and had similar gene structure and motif composition of Brassica rapa epithiospecifier proteins (BrESPs) and B. rapa nitrile-specifier proteins (BrNSPs) in the same clade. We identified seven tandem duplicated events and eight pairs of segmentally duplicated genes. Synteny analysis showed that Chinese cabbage and Arabidopsis thaliana are closely related. We detected the proportion of various glucosinolate hydrolysates in Chinese cabbage and verified the function of BrESPs and BrNSPs in glucosinolate hydrolysis. Furthermore, we used quantitative RT-PCR to analyze the expression of BrESPs and BrNSPs and demonstrated that these genes responded to insect attack. Our findings provide novel insights into BrESPs and BrNSPs that can help further promote the regulation of glucosinolate hydrolysates by ESP and NSP to resist insect attack in Chinese cabbage.

17.
Yi Chuan ; 45(2): 156-164, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36927662

ABSTRACT

DELLA gene family is involved in the regulation of signal transduction of plant hormones. mRNAs of GA insensitive (GAI), the member of DELLA gene family, are also signaling molecules of long-distance transport in plants. Genome-wide identification and mRNA transport analysis of the members of DELLA gene family in head cabbage (Brassica oleracea var. capitata) can provide basic data for their application in head cabbage. In this study, five members of DELLA gene family (BoRGA1, BoRGA2, BoRGL1, BoRGL2, and BoRGL3) were identified in head cabbage using genome and transcriptome data. However, head cabbage lacked a GAI gene in its genome. The scion (head cabbage, inbred line G27) and the rootstock Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) (sijiucaixin) were cleft-grafted together to produce the heterograft. Inflorescence stem of the rootstock and the corresponding inflorescence stem in Chinese flowering cabbage seedlings (as controls) were purified and analyzed with transcriptome sequencing. The total of 8, 9, 3, 5, and 1 exogenous read(s), derived respectively from BoRGA1, BoRGA2, BoRGL1, BoRGL2, and BoRGL3, were identified in the transcriptomes of the rootstocks. Nevertheless, mRNA transport of DELLA family genes from scion to rootstock did not increase the transcriptional level of the members of DELLA gene family in the rootstocks. Correlation analysis suggested that mRNA transport efficiency of the DELLA family genes was correlated with the sequence and the transcriptional level of the respective DELLA gene in the scion (head cabbage). This study lays the foundation for further investigation on the molecular mechanism of mRNA transport of the members of DELLA gene family in head cabbage.


Subject(s)
Brassica , Brassica/genetics , Heterografts , Transcriptome , Plant Growth Regulators , RNA, Messenger/genetics , Gene Expression Regulation, Plant
18.
Zhongguo Zhong Yao Za Zhi ; 48(2): 366-373, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725226

ABSTRACT

An analytical method for 10 mycotoxins in Hippophae Fructus medicinal and edible products was established in this study, and the contamination of their mycotoxins was analyzed. First of all, the mixed reference solution of ten mycotoxins such as aflatoxin, ochratoxin, zearalenone, and dexoynivalenol was selected as the control, and the Hippophae Fructus medicinal and edible products were prepared. Secondly, based on the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) technology, 10 mycotoxins in Hippophae Fructus medicinal and edible products were quantitatively investigated and their content was determined. Finally, the contamination of mycotoxins was analyzed and evaluated. The optimal analysis conditions were determined, and the methodological inspection results showed that the 10 mycotoxins established a good linear relationship(r>0.99). The method had good repeatability, test sample specificity, stability, and instrument precision. The average recovery rates of 10 mycotoxins in Hippophae Fructus medicinal products, edible solids, and edible liquids were 90.31%-109.4%, 87.86%-107.8%, and 85.61%-109.1%, respectively. Relative standard deviation(RSD) values were 0.22%-10%, 0.75%-13%, and 0.84%-8.5%, repsectively. Based on UPLC-MS/MS technology, the simultaneous determination method for the limits of 10 mycotoxins established in this study has fast detection speed, less matrix interference, high sensitivity, and accurate results, which is suitable for the limit examination of 10 mycoto-xins in Hippophae Fructus medicinal and edible products.


Subject(s)
Hippophae , Mycotoxins , Mycotoxins/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Limit of Detection , Chromatography, High Pressure Liquid/methods
19.
J Org Chem ; 88(5): 3089-3108, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36763008

ABSTRACT

4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.

20.
Appl Opt ; 61(18): 5381-5385, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36256104

ABSTRACT

A simple method for laser frequency stabilizing by a temperature-tuned Fabry-Perot etalon is reported. The etalon is a plano-convex lens that permits tuning the length and refractive index via controlling the temperature for shifting wavelengths in the region of 852 nm, with a transmission spectral linewidth of ∼72.5MHz and free spectral region of ∼16GHz. Using this scheme, arbitrary frequency locking of a laser with an adjustable frequency resolution of 2.34GHz/∘C is realized, and MHz-level long-term stability is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...