Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(26): e202405252, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38644634

ABSTRACT

Catalytic upcycling of polyolefins into high-value chemicals represents the direction in end-of-life plastics valorization, but poses great challenges. Here, we report the synthesis of a tandem porous catalyst via a micelle cascade assembly strategy for selectively catalytic cracking of polyethylene into olefins at a low temperature. A hierarchically porous silica layer from mesopore to macropore is constructed on the surface of microporous ZSM-5 nanosheets through cascade assembly of dynamic micelles. The outer macropore arrays can adsorb bulky polyolefins quickly by the capillary and hydrophobic effects, enhancing the diffusion and access to active sites. The middle mesopores present a nanoconfinement space, pre-cracking polyolefins into intermediates by weak acid sites, which then transport into zeolites micropores for further cracking by strong Brønsted acid sites. The hierarchically porous and acidic structures, mimicking biomimetic protease catalytic clefts, ideally match the tandem cracking steps of polyolefins, thus suppressing coke formation and facilitating product escape. As a result, light hydrocarbons (C1-C7) are produced with a yield of 443 mmol gZSM-5 -1, where 74.3 % of them are C3-C6 olefins, much superior to ZSM-5 and porous silica catalysts. This tandem porous catalyst exemplifies a superstructure design of catalytic cracking catalysts for industrial and economical upcycling of plastic wastes.

2.
J Ovarian Res ; 16(1): 219, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986114

ABSTRACT

BACKGROUND: Angiogenesis and metastasis contributes substantially to the poor outcome of patients with ovarian cancer. We aimed to explore the role and mechanisms of the long non-coding RNA NEAT1 (nuclear enriched abundant transcript 1) in regulating angiogenesis and metastasis of human ovarian cancer. NEAT1 expression in human ovarian cancer tissues and cell lines including SKOV-3 and A2780 was investigated through in situ hybridization. Gene knockdown and overexpressing were achieved through lentivirus infection, transfection of plasmids or microRNA mimics. Cell viability was measured with the cell counting kit-8 assay, while apoptosis was determined by flow cytometry. Cell migration and invasion were evaluated by transwell experiments, and protein expression was determined by western blot assays or immunohistochemistry. Duo-luciferase reporter assay was employed to confirm the interaction between NEAT1 and target microRNA. In vivo tumor growth was evaluated in nude mice with xenografted SKOV-3/A2780 cells, and blood vessel formation in tumor was examined by histological staining. RESULTS: NEAT1 was highly expressed in ovarian cancer tissues of patients and cell lines. MiR-214-3p was identified as a sponging target of NEAT1, and they antagonizedeach other in a reciprocal manner. NEAT1-overexpressing SKOV-3 and A2780 cells had significantly increased proliferation, reduced apoptosis, and augmented abilities of migration and invasion, while cells with NEAT1-knockdown displayed markedly attenuated traits of malignancies. Additionally, the levels of NEAT1 appeared to be positively correlated with the expression levels of angiogenesis-related molecules, including Semaphorin 4D (Sema4D), Sema4D receptor Plexin B1, T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1), and Rho-like GTPases Rac1/2/3. In the xenograft mouse model, more NEAT1 expression resulted in faster in vivo tumor growth, more blood vessel formation in tumor tissues, as well as higher expression levels of angiogenesis-related molecules and CD31. CONCLUSIONS: NEAT1 promotes angiogenesis and metastasis in human ovarian cancer. NEAT1 and miR-214-3p are promising targets for developing therapeutics to treat human ovarian cancer.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Mice, Nude , Ovarian Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics
3.
BMC Womens Health ; 23(1): 364, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422650

ABSTRACT

BACKGROUND: To explore the pathogen distribution in Chinese females with vaginitis. METHODS: This retrospective study included Chinese females with vaginitis admitted at the outpatient department of the Gynecology Clinic of the Second Affiliated Hospital of Kunming Medical University between January 2013 and June 2013. Data on the vaginal pathogens and inflammation were analyzed. RESULTS: The vaginal secretions from 15,601 gynecologic outpatients were abnormal, including 8547 (54.78%) with vaginal infection and 7054 (45.22%) without. In patients with vaginal infections, a single infection was observed in 69.72% (5959/8547) of them, and mixed infection was observed in 30.28% (2588/8547). The differences in age and inflammation grade between the infection and no-infection groups were statistically significant (all P < 0.001). In addition, multiple types of vaginitis could be diagnosed in patients with mixed infections. CONCLUSIONS: About half of the Chinese women with abnormal vaginal secretions are positive for pathogens in the study period. Patients' age and inflammation grade are associated with co-infection. From the public health perspective, this study suggests that the importance of vaginal hygiene should be enforced in Chinese women.


Subject(s)
Coinfection , Vaginitis , Female , Humans , Retrospective Studies , East Asian People , Vaginitis/epidemiology , Vagina , Inflammation
4.
Food Chem ; 371: 131390, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34808780

ABSTRACT

Some recent studies have revealed individual and the combined interactions of gluten and starch affecting dough mixing properties. However, the combined influence of high-molecular-weight glutenin subunits (HMW-GS) and starch on dough mixing and rheological properties requires elucidation. Thus four recombinant inbred lines, SS 1, SS 2, ZZ 1 and ZZ 2, were selected based on their HMW-GSs compositions. Compared to ZZ 1 and ZZ 2, both SS 1 and SS 2 carried superior HMW-GS alleles, and exhibited extended dough development and stability time, indicating their significant dough mixing characteristics. The gluten skeleton of the wheat lines SS 2 and ZZ 2 with higher B-type starch proportions exhibited fewer breakages along with the rise of dough temperature during mixing. Higher content of B-type starch strengthens interaction between starch and gluten skeleton at the dough heating stage, suggesting a specific range of B-type starch proportion can improve dough mixing characteristics.


Subject(s)
Starch , Triticum , Glutens , Rheology , Skeleton , Triticum/genetics
5.
Front Nutr ; 8: 785847, 2021.
Article in English | MEDLINE | ID: mdl-34966773

ABSTRACT

Hulless barley (Hordeum vulgare L.), also known as highland barley, contains nutritional compounds, such as ß-glucan and polyphenol, which can be added to wheat flour to improve the dough nutritional quality. In this study, different formulated dough samples were obtained by individually adding four hulless barley flours into flour of a wheat variety (Jimai 44, designated as JM) which has very strong gluten. The effects of hulless barley supplementation on gluten structure, dough rheological properties, bread-making properties, and starch digestibility were assessed. The results showed that compared with JM dough, substitution of hulless barley flour to wheat flour at levels ranging from 10 to 40% negatively affected gluten micro-structure and dough mixing behavior, because the cross-links of gluten network were partially broken and the dough development time and stability time were shortened. For the hulless barley-supplemented bread, specific volume was significantly (P < 0.05) increased while springiness was not greatly changed. Furthermore, the hydrolysed starch rate in hulless barley-supplemented bread was decreased, compared with that in JM bread. Importantly, the contents of ß-glucan, polyphenols and flavonoids in hulless barley-supplemented bread were 132.61-160.87%, 5.71-48.57%, and 25-293.75% higher than those in JM bread, respectively. Taken together, the hulless barley-supplemented bread has been fortified with enhanced nutritional components, more desirable bread-making quality, and improved starch hydrolytic properties, which shows a great potential to use hulless barley as a health supplement.

6.
Front Cell Infect Microbiol ; 11: 693914, 2021.
Article in English | MEDLINE | ID: mdl-34295839

ABSTRACT

Moniezia expansa (M. expansa) parasitizes the small intestine of sheep and causes inhibited growth and development or even death. Being globally distributed, it causes considerable economic losses to the animal husbandry industry. Here, using Illumina, PacBio and BioNano techniques, we obtain a high-quality genome assembly of M. expansa, which has a total length of 142 Mb, a scaffold N50 length of 7.27 Mb and 8,104 coding genes. M. expansa has a very high body fat content and a specific type of fatty acid metabolism. It cannot synthesize any lipids due to the loss of some key genes involved in fatty acid synthesis, and it may can metabolize most lipids via the relatively complete fatty acid ß-oxidation pathway. The M. expansa genome encodes multiple lipid transporters and lipid binding proteins that enable the utilization of lipids in the host intestinal fluid. Although many of its systems are degraded (with the loss of homeobox genes), its reproductive system is well developed. PL10, AGO, Nanos and Pumilio compose a reproductive stem cell regulatory network. The results suggest that the high body lipid content of M. expansa provides an energy source supporting the high fecundity of this parasite. Our study provides insight into host interaction, adaptation, nutrient acquisition, strobilization, and reproduction in this parasite and this is also the first genome published in Anoplocephalidae.


Subject(s)
Cestoda , Adipose Tissue , Animals , Fatty Acids , Reproduction , Sheep , Stem Cells
7.
Food Chem ; 358: 129850, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33940291

ABSTRACT

Aegilops geniculata, a relative of common wheat, has many useful traits for the improvements of wheat varieties. The wheat-Ae. geniculata disomic addition lines (DALs) carrying prior traits need to be characterized for wheat varieties improvement. We currently found that CS-1Ug (Chinese Spring-Ae. geniculata 1Ug DAL) possessed improved dough rheological properties than CS (Chinese Spring) did, and investigated the reasons of those rheological changes in dough. The results showed that CS-1Ug carries a novel high-molecular-weight glutenin subunit (HMW-GS), a substitute for Dx2 from CS, which led to the changes in the relative proportion of individual HMW-GS in total HMW-GSs. Changes in gluten composition improved the stability and elasticity of dough by promoting the accumulation of unextractable polymeric protein, and optimizing the micro-structure of the gluten. The current study provides basic information on CS-1Ug used as a potential resource for future wheat quality breeding.


Subject(s)
Aegilops/genetics , Glutens/chemistry , Triticum/chemistry , Chromosomes, Plant , Flour , Glutens/genetics , Molecular Weight , Plant Breeding , Plant Proteins/chemistry , Rheology , Seeds/chemistry , Triticum/growth & development
8.
Dalton Trans ; 49(22): 7436-7443, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32432241

ABSTRACT

Owing to the combination of intriguing activity and conductivity, hybrid compositions of layered double hydroxides (LDHs) and carbon-based materials have been extensively and widely applied to evolve oxygen gas during water splitting. Here, a facile in situ nucleation strategy was used to construct ultrafine NiFe-LDH nanosheets monodispersed on a carbon black (CB) substrate. Notably, this work displayed the interfacial impact of combining CB with NiFe-LDHs on electrocatalyst activation. Interestingly, the optimized NiFe-LDHs/CB composite displays a fast activation rate and excellent water oxidation performance on a glassy-carbon electrode (an overpotential of 226 mV at 10 mA cm-2; a Tafel slope of 57 mV dec-1). This is due to the high active area, low impedance and ultra-high active metal atom utilization rate, accelerating charge transfer at the interface during the activation process. More importantly, this work highlights the interfacial charge transfer effect during the activation process and supplies clues for designing electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...