Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Colloid Interface Sci ; 666: 66-75, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583211

ABSTRACT

Perovskite CsPbBr3 quantum dot shows great potential in artificial photosynthesis, attributed to its outstanding optoelectronic properties. Nevertheless, its photocatalytic activity is hindered by insufficient catalytic active sites and severe charge recombination. In this work, a CsPbBr3@Ag-C3N4 ternary heterojunction photocatalyst is designed and synthesized for high-efficiency CO2 reduction. The CsPbBr3 quantum dots and Ag nanoparticles are chemically anchored on the surface of g-C3N4 sheets, forming an electron transfer tunnel from CsPbBr3 quantum dots to Ag nanoparticles via g-C3N4 sheets. The resulting CsPbBr3@Ag-C3N4 ternary photocatalyst, with spatial separation of photogenerated carriers, achieves a remarkable conversion rate of 19.49 µmol·g-1·h-1 with almost 100 % CO selectivity, a 3.13-fold enhancement in photocatalytic activity as compared to CsPbBr3 quantum dots. Density functional theory calculations reveal the rapid CO2 adsorption/activation and the decreased free energy (0.66 eV) of *COOH formation at the interface of Ag nanoparticles and g-C3N4 in contrast to the g-C3N4, leading to the excellent photocatalytic activity, while the thermodynamically favored CO desorption contributes to the high CO selectivity. This work presents an innovative strategy of constructing perovskite-based photocatalyst by modulating catalyst structure and offers profound insights for efficient CO2 conversion.

2.
J Ethnopharmacol ; : 118245, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM: This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS: AS models were established by subjecting ApoE-/- mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaques was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS: After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages within the plaque (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the cytokine-cytokine receptor interaction pathway and chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated in LPS-stimulated RAW264.7 cells (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION: Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the cytokine-cytokine receptor interaction and chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.

3.
J Ethnopharmacol ; 316: 116701, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37257703

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Biling Weitong Granules (BLWTG) are a newly developed traditional Chinese medicine prescription based on the ancient prescription Jinlingzi San and Zuojin Wan. It is used for the treatment of functional gastrointestinal disorders (FGIDs) featured as visceral hypersensitivity (VH). However, its active ingredients and protein targets involved still remain unknown. AIM OF THE STUDY: To explore the potential targets of BLWTG for the treatment of visceral hypersensitivity. MATERIALS AND METHODS: Active components and their protein targets of BLWTG were screened from TCMSP database and the component-target network were constructed with Cytoscape software. Irritable bowel syndrome (IBS) was the representative disease in this study and information on its linked pathways was obtained from NCBI, Drugbank and Genecard. Target pathways of BLWTG were analyzed through KEGG to verify the correlation with IBS related pathways.Then, the VH mouse models was induced by maternal separation (MS), randomly divided into normal saline (NS),BLWTG1 (low-dosage) and BLWTG2 (high-dosage) group. After intervention, threshold intensity of colorectal distension (CRD) and body weight were measured to evaluate relief of IBS symptoms. Elisa was performed to evaluate 5-HT concentration changes of colon tissues. Flow cytometry was performed to assess changes of colon eosinophils and mast cells proportion. Transcriptome sequencing was employed to analyze changes of pathways and differential genes. RESULTS: 199 protein targets and 132 active components of BLWTG were identified. KEGG analysis revealed the overlap between BLWTG target pathways and IBS related pathways such as neuroactive ligand-receptor interaction, tryptophan metabolism and inflammatory reaction. 34 genes were not only BLWTG target proteins but also recognized targets for treating IBS. After maternal separation (MS), the mice showed a significant decrease in threshold intensity of CRD, a progressive decrease in body weight and an increase of 5-HT concentration of colon tissue. The proportion of mast cells and eosinophils in the colon increased. Differential genes including Hp,Ido1 and Aqp7 were significantly increased in MS mice group and IBS-related pathways were upregulated. After treatment of BLWTG, threshold intensity of CRD and body weight were significantly improved and IBS related pathways were downregulated. In addition, among BLWTG protein targets, Il1b,Tnf,Adrb1 and Nos2 were found upregulated in MS+NS mice and downregulated after BLWTG intervention through combination of transcriptome sequencing. CONCLUSIONS: In maternal separation-induced mouse models, BLWTG could alleviate visceral hypersensitivity, possibly through downregulation of 5-HT concentration and eosinophils and mast cells proportion in colon and critical pathways such as neuroactive ligand-receptor pathway. Potential targets of BLWTG including Il1b,Tnf,Adrb1 and Nos2 were found through integration of network pharmacology database and transcriptome sequencing, providing evidence for further study on mechanisms underlying visceral hypersensitivity.


Subject(s)
Drugs, Chinese Herbal , Irritable Bowel Syndrome , Animals , Mice , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/metabolism , Serotonin/metabolism , Maternal Deprivation , Ligands , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Proteins , Molecular Docking Simulation
4.
Int J Biol Macromol ; 242(Pt 3): 124960, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230448

ABSTRACT

The conventional method of using montmorillonite hemostatic materials affects the hemostatic effect due to easy dislodgement on the wound surface. In this paper, a multifunctional bio-hemostatic hydrogel (CODM) was prepared based on hydrogen bonding and Schiff base bonding using modified alginate, polyvinylpyrrolidone (PVP), and carboxymethyl chitosan. The amino group-modified montmorillonite was uniformly dispersed in the hydrogel by its amido bond formation with the carboxyl groups of carboxymethyl chitosan and oxidized alginate. The catechol group, -CHO, and PVP can form hydrogen bonds with the tissue surface to afford the firm tissue adhesion to afford the wound hemostatic. The addition of montmorillonite-NH2 further improves the hemostatic ability, making it better than commercial hemostatic materials. Moreover, the photothermal conversion ability (derived from the polydopamine) was synergized with the phenolic hydroxyl group, quinone group, and the protonated amino group to effectively kill the bacteria in vitro and in vivo. Based on its in vitro and in vivo biosafety and satisfactory degradation ratio anti-inflammatory, antibacterial, and hemostatic properties, the CODM hydrogel holds promising potential for emergency hemostasis and intelligent wound management.


Subject(s)
Chitosan , Hemostatics , Bentonite , Hydrogels/pharmacology , Hemostatics/pharmacology , Alginates , Anti-Bacterial Agents/pharmacology , Hemostasis
5.
World J Clin Cases ; 11(11): 2576-2581, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37123311

ABSTRACT

BACKGROUND: Primary cancer of the appendix is rare and often difficult to diagnose preoperatively due to the lack of specific clinical symptoms. Autoimmune encephalitis (AIE) is the most common cause of non-infectious encephalitis. The etiologies of AIE include tumors (paraneoplastic), infections (parainfections), or recessive infections. The tumors that have been reported to cause AIE include thymomas, ovarian teratomas, lung cancers, and breast cancers. However, there are no reports of AIE occurring after surgery for appendiceal cancer. This report describes the diagnosis and treatment of a patient with an appendiceal cancer and postoperative AIE. CASE SUMMARY: We report the case of a 47-year-old man who was transferred to our hospital due to a recurrent low intestinal obstruction. Abdominal enhanced computed tomography was used to consider the possibility of a terminal ileal tumor with serous infiltration and lymph node metastasis. A right hemi-colectomy was performed under general anesthesia with an ileo-transcolon anastomosis and laparoscopic exploration. The postoperative pathologic evaluation revealed a high-grade goblet cell carcinoma of the appendix, accompanied by mesangial and abdominal lymph node metastases, and neural tube and vascular infiltration. The operation was completed without complication. The patient developed restlessness on postoperative day 4, and gradually developed a disturbance of consciousness on postoperative day 6. He was transferred to West China Hospital of Sichuan University and diagnosed with AIE. CONCLUSION: Albeit rare, the occurrence of neurologic and psychiatric symptoms in patients with an appendiceal cancer postoperatively suggests the possibility of AIE.

6.
J Therm Biol ; 113: 103458, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055100

ABSTRACT

Currently, numerous thermal comfort models have been proposed; however, research on the combination of different models is lacking. This study aims to predict the overall thermal sensation (OTS*) and thermal comfort (OTC*) with different model combinations under hot and cold step changes. Three cold- and hot-shock processes are designed in the climate chamber. Accordingly, the skin temperature, thermal sensation, and thermal comfort votes of 16 participants are collected. The impacts of winter hot and cold step changes on subjective votes and skin temperatures are evaluated. Further, the OTS* and OTC* values are calculated, and their accuracy under different model combinations is analyzed. The results reveal that thermal sensation changes in human body exhibit distinct asymmetry under the cold and hot step-changes, except for the cycle of "15-30-15 °C" (I15). The parts farther from the core area become more asymmetrical after the step changes. The single models exhibit the highest accuracy in different model combinations. The combined form of a single model is recommended for thermal sensation or comfort prediction.


Subject(s)
Cold Temperature , Thermosensing , Humans , Seasons , Climate , Skin Temperature , Temperature , Hot Temperature
7.
Trends Pharmacol Sci ; 44(5): 303-317, 2023 05.
Article in English | MEDLINE | ID: mdl-37059054

ABSTRACT

Anticancer-targeted therapies inhibit various kinases implicated in cancer and have been used in clinical settings for decades. However, many cancer-related targets are proteins without catalytic activity and are difficult to target using traditional occupancy-driven inhibitors. Targeted protein degradation (TPD) is an emerging therapeutic modality that has expanded the druggable proteome for cancer treatment. With the entry of new-generation immunomodulatory drugs (IMiDs), selective estrogen receptor degraders (SERDs), and proteolysis-targeting chimera (PROTAC) drugs into clinical trials, the field of TPD has seen explosive growth in the past 10 years. Several challenges remain that need to be tackled to increase successful clinical translation of TPD drugs. We present an overview of the global landscape of clinical trials of TPD drugs over the past decade and summarize the clinical profiles of new-generation TPD drugs. In addition, we highlight the challenges and opportunities for the development of effective TPD drugs for future successful clinical translation.


Subject(s)
Neoplasms , Humans , Proteolysis , Neoplasms/drug therapy , Drug Delivery Systems , Proteolysis Targeting Chimera
8.
Front Immunol ; 14: 1135096, 2023.
Article in English | MEDLINE | ID: mdl-36911675

ABSTRACT

Background/Objectives: Autoimmune pancreatitis (AIP) is a distinct form of pancreatic inflammatory disease that responds well to glucocorticoid therapy. Knowledge on AIP has rapidly evolved over the past two decades. Based on bibliometric analysis, this study aimed to assess the research status of AIP over the past two decades and determine the research focus and emerging topics. Methods: AIP-related publications published between January 1, 2002, and June 6, 2022, were retrieved from the Web of Science Core Collection. Bibliometric data were analyzed using HisCite, VOSviewer, CiteSpace, and bibliometrix package. Annual output, leading countries/regions, active institutions and authors, core journals and references, and keywords of AIP were evaluated. Results: Overall, 1,772 publications were retrieved from 501 journals by 6,767 authors from 63 countries/regions. Japan published articles on AIP the most (n=728, 41.1%), followed by the United States (n=336, 19%), Germany (n=147, 8.3%), China (n=127, 7%), and Italy (n=107, 6%). The top three most prolific authors were Terumi Kamisawa from Tokyo Metropolitan Komagome Hospital (n=117), Kazuichi Okazaki from Kansai Medical University (n=103), and Shigeyuki Kawa from Matsumoto Dental University (n=94). Pancreas was the most productive journal regarding AIP research (n=95), followed by the Journal of Gastroenterology (n=67), Internal Medicine (n=66), Pancreatology (n=63), and World Journal of Gastroenterology (n=62). "Diagnosis" was the most mentioned keyword. "Risk," "malignancy," "outcome," "22-gauge needle," and "fine-needle aspiration" were recognized as emerging topics. Conclusion: Japan was the leading country in AIP research. Research papers were mainly published in specialized journals. Diagnosis was the research focus. Long-term outcomes and pancreatic tissue acquisition were recognized as research frontiers for AIP.


Subject(s)
Autoimmune Pancreatitis , Pancreatic Diseases , Humans , Pancreas , Bibliometrics , China , Germany
9.
Clin Colorectal Cancer ; 22(1): 120-128, 2023 03.
Article in English | MEDLINE | ID: mdl-36526537

ABSTRACT

INTRODUCTION: Stereotactic Ablative Radiation Therapy (SABR) is a therapeutic option for patients with inoperable oligometastatic colorectal carcinoma (CRC). Given the scarcity of prospective data on outcomes of SABR for metastatic CRC, this study aims to review SABR outcomes and determine predictive factors of local control (LC) and survival in patients with liver metastases from CRC. MATERIALS AND METHODS: A retrospective review of SABR for CRC liver metastases between 2011 and 2019 was undertaken. Endpoints included LC, overall survival (OS), progression-free survival (PFS) and time to restarting systemic therapy. Univariate (UVA) and multivariable analyses (MVA) were performed to identify predictive factors. RESULTS: Forty-eight patients were identified. The total number of tumors treated was 58. Median follow-up was 26.6 months. LC at 1, 2 and 3 years was 92.7%, 80.0%, and 61.2% respectively. Median time to local failure was 40.0 months (95% CI 31.8-76.1 months). Median OS was 31.9 months (95% CI 20.6-40.0 months). OS at 1, 2, and 3 years was 79.2%, 61.7%, and 44.9% respectively. Thirty-three patients (69%) restarted systemic therapy after completion of SABR. Median time to restarting chemotherapy was 11.0 months (95% CI 7.1-17.6 months). Systemic therapy free survival at 1, 2, and 3 years was 45.7%, 29.6%, and 22.6% respectively. On MVA, inferior LC was influenced by GTV volume ≥40 cm3 (HR: 3.805, 95% CI 1.376-10.521, P = .01) and PTV D100% BED <100 Gy10 (HR 2.971, 95% CI 1.110-7.953; P = .03). Inferior OS was associated with PTV volume ≥200 cm3 (HR 5.679, 95% CI 2.339-13.755; P < .001). CONCLUSION: SABR is an effective therapeutic option for selected patients with CRC liver metastases providing acceptable LC within the first 2 years. In many cases, it provides meaningful chemotherapy-free intervals. Higher biological effective doses are required to enhance LC.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Radiosurgery , Humans , Prospective Studies , Radiosurgery/adverse effects , Progression-Free Survival , Retrospective Studies , Liver Neoplasms/radiotherapy , Colorectal Neoplasms/pathology
10.
Adv Mater ; 35(3): e2207555, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36353881

ABSTRACT

Combination of the strong light-absorbing power of plasmonic metals with the superior charge carrier dynamics of halide perovskites is appealing for bio-inspired solar-energy conversion due to the potential to acquire long-lived plasmon-induced hot electrons. However, the direct coupling of these two materials, with Au/CsPbBr3 heteronanocrystals (HNCs) as a prototype, results in severe suppression of plasmon resonances. The present work shows that interfacial engineering is a key knob for overcoming this impediment, based on the creation of a CdS mediate layer between Au and CsPbBr3 forming atomically organized Au-CdS and CdS-CsPbBr3 interfaces by nonepitaxial/epitaxial combined strategy. Transient spectroscopy studies demonstrate that the resulting Au@CdS/CsPbBr3 HNCs generate remarkably long-lived plasmon-induced charge carriers with lifetime up to nanosecond timescale, which is several orders of magnitude longer than those reported for colloidal plasmonic metal-semiconductor systems. Such long-lived carriers extracted from plasmonic antennas enable to drive CO2 photoreduction with efficiency outperforming previously reported CsPbBr3 -based photocatalysts. The findings disclose a new paradigm for achieving much elongated time windows to harness the substantial energy of transient plasmons through realization of synergistic coupling of plasmonic metals and halide perovskites.

11.
Adv Sci (Weinh) ; 9(24): e2201039, 2022 08.
Article in English | MEDLINE | ID: mdl-35754306

ABSTRACT

Shape editability combined with a self-healing capability and long-term cycling durability are highly desirable properties for wearable supercapacitors. Most wearable supercapacitors have rigid architecture and lack the capacity for editability into desirable shapes. Through sandwiching hydrogel electrolytes between two electrodes, a suite of wearable supercapacitors that integrate desirable properties namely: repeated shape editability, excellent self-healing capability, and long-term cycling durability is demonstrated. A strategy is proposed to enhance the long-term cycling durability by utilizing hydrogel electrolytes with unique cross-linking structures. The dynamic crosslinking sites are formed by quadruple H bonds and hydrophobic association, stabilizing the supercapacitors from inorganic ion disruption during charge-discharge processes. The fabricated supercapacitors result in the capacitance retention rates of 99.6% and 95.8% after 5000 and 10 000 charge-discharge cycles, respectively, which are much higher than others reported in the literature. Furthermore, the supercapacitor sheets can be repeatedly processed into various shapes without any capacitance loss. The supercapacitors exhibit a 95% capacitance retention rate after five cutting/self-healing cycles, indicative of their excellent self-healing performance. To demonstrate real-life applicability, the wearable supercapacitors are successfully used to power a light-emitting diode and an electronic watch.


Subject(s)
Hydrogels , Wearable Electronic Devices , Electric Capacitance , Electrodes , Electrolytes/chemistry
12.
Adv Healthc Mater ; 11(15): e2200524, 2022 08.
Article in English | MEDLINE | ID: mdl-35611682

ABSTRACT

In this study, a polyvinylpyrrolidone (PVP)-decorated MoSe2 (MoSe2 -PVP) nanoparticle with excellent photothermal transforming ability and chlorin E6 (Ce6) loading capacity is designed for combined tumor photothermal therapy (PTT), tumor photodynamic therapy (PDT), and immunotherapy. The light-to-heat conversion efficiency under irradiation with an 808 nm near-infrared laser is as high as 59.28%. The MoSe2 -PVP NPs could function as an artificial catalase and catalyze the decomposition of H2 O2 . Their catalytic activity and thermal durability are higher than the native catalase, which relieve the tumor hypoxia status and sensitize the tumor PDT. The data show that the synthetic MoSe2 -PVP is biodegradable, owing to the oxidation of the Mo4+ to Mo6+ . Moreover, its degradation products could increase the proportion of mature dendritic cells and CD8+ thymus (T) cells and promote the infiltration of active CD8+ T cells in tumors. The immune checkpoint inhibitor, programmed cell death protein 1 monoclonal antibody is combined with MoSe2 -PVP and it is found that its degradation product could efficiently change the immune microenvironment of the tumor.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , CD8-Positive T-Lymphocytes , Catalase , Cell Line, Tumor , Humans , Immunotherapy , Molybdenum , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Tumor Microenvironment
13.
Chem ; 8(10): 2856-2887, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-37396824

ABSTRACT

Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.

14.
Tetrahedron Chem ; 12022 Mar.
Article in English | MEDLINE | ID: mdl-38606284

ABSTRACT

Degraded limonoids are a subclass of limonoid natural products that derive from ring-intact or ring-rearranged limonoids. Establishment of robust synthetic routes to access them could provide valuable materials to identify the simplest active pharmacophore responsible for the observed biological activities of the parent molecules. This communication delineates the development of a divergent strategy to furnish melazolide B and several other related congeners from a common keto-lactone intermediate, which was rapidly assembled from α-ionone. A chemoselective carbonyl α,ß-dehydrogenation and a Wharton reduction were key strategic steps in this synthetic pathway.

15.
Entropy (Basel) ; 23(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34828159

ABSTRACT

We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal secure computation problem, we propose a novel coding scheme built from two steps. First, the function to be computed is expanded such that it can be recovered while additional information might be leaked. Second, a randomization step is applied to the expanded function such that the leaked information is protected. We implement this expand-and-randomize coding scheme with two algebraic structures-the finite field and the modulo ring of integers, where the expansion step is realized with the addition operation and the randomization step is realized with the multiplication operation over the respective algebraic structures.

16.
Exp Ther Med ; 22(5): 1308, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34630662

ABSTRACT

Yiqi Huoxue (YQHX) is widely used in traditional Chinese medical practice due to its reported cardioprotective effects. The aim of the present study was to investigate the mechanism underlying these effects of YQHX via the regulation of the Sigma-1 receptor. The Sigma-1 receptor is a chaperone protein located on the mitochondrion-associated endoplasmic reticulum (ER) membrane. It serves an important role in heart function by regulating intracellular Ca2+ homeostasis and enhancing cellular bioenergetics. In the present study, male Sprague Dawley rats with myocardial infarction (MI)-induced heart failure were used. MI rats were administered different treatments, including normal saline, YQHX and fluvoxamine, an agonist of the Sigma-1 receptor. Following four weeks of treatment, YQHX was revealed to improve heart function and attenuate myocardial hypertrophy in MI rats. Additionally, YQHX increased the ATP content and improved the mitochondrial ultrastructure in the heart tissues of MI rats in comparison with acontrol. Treatment was revealed to attenuate the decreased expression of the Sigma-1 receptor and increase the expression of inositol triphosphate type 2 receptors (IP3R2) in MI rats. By exposing H9c2 cells to angiotensin II (Ang II), YQHX prevented cell hypertrophy and normalized the decreased ATP content. However, these positive effects were partially inhibited when the Sigma-1 receptor was knocked down via small interfering RNA transfection. The results of the present study suggested that the Sigma-1 receptor serves an important role in the cardioprotective efficacy of YQHX by increasing ATP content and attenuating cardiomyocyte hypertrophy.

17.
Front Chem ; 9: 699861, 2021.
Article in English | MEDLINE | ID: mdl-34295875

ABSTRACT

With the increasing enthusiasm for the hydrogen economy and zero-emission fuel cell technologies, intensive efforts have been dedicated to the development of high-performance electrocatalytic materials for the cathodic oxygen reduction reaction (ORR). Some major fundamental breakthroughs have been made in the past few years. Therefore, reviewing the most recent development of platinum-group-metal (PGM) ORR electrocatalysts is of great significance to pushing it forward. It is known that the ORR on the fuel cell electrode is a heterogeneous reaction occurring at the solid/liquid interface, wherein the electron reduces the oxygen along with species in the electrolyte. Therefore, the ORR kinetic is in close correlation with the electronic density of states and wave function, which are dominated by the localized atomic structure including the atomic distance and coordination number (CN). In this review, the recent development in the regulation over the localized state on the catalyst surface is narrowed down to the following structural factors whereby the corresponding strategies include: the crystallographic facet engineering, phase engineering, strain engineering, and defect engineering. Although these strategies show distinctive features, they are not entirely independent, because they all correlate with the atomic local structure. This review will be mainly divided into four parts with critical analyses and comparisons of breakthroughs. Meanwhile, each part is described with some more specific techniques as a methodological guideline. It is hoped that the review will enhance an insightful understanding on PGM catalysts of ORR with a visionary outlook.

18.
J Sep Sci ; 44(16): 3098-3106, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34038623

ABSTRACT

The phase ratio of a chromatographic system is an important measurement that has long been estimated or calculated, but rarely directly measured. This study utilized a nanoflow liquid chromatography instrument to more accurately measure the phase ratio for a lauryl acrylate porous polymer monolith. Direct measurement of the phase ratio, and its dependence on temperature, allows for a better understanding of the thermodynamics of retention of small analytes. This study investigates the retention of an alkyl benzene series, toluene to octylbenzene, via capillary electrochromatography. The phase ratio was determined to be 0.202 at 303 K and 0.213 at 333 K. Using the directly measured phase ratio, entropic contributions to retention can also be obtained. Therefore, the Gibbs free energy calculations from these measurements and methods can give insight to modes of retention. The free energy of retention for toluene is -3.97 kJ/mol at 303 K and -3.78 kJ/mol at 333 K. The trends for enthalpy, entropy, and Gibbs free energy of transfer show that retention is enthalpically driven in this capillary electrochromatography (CEC) porous polymer monolith system.

19.
J Ethnopharmacol ; 272: 113943, 2021 May 23.
Article in English | MEDLINE | ID: mdl-33617967

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY: In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS: Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS: Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 µg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS: The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Saponins/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Drugs, Chinese Herbal/therapeutic use , Humans , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Neuroprotection/drug effects , Neuroprotective Agents/therapeutic use , Nogo Proteins/antagonists & inhibitors , Nogo Proteins/genetics , Nogo Proteins/metabolism , Panax notoginseng/chemistry , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Saponins/therapeutic use , Signal Transduction/drug effects , Stroke/drug therapy , Synaptophysin/metabolism , Time Factors , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
20.
Article in English | MEDLINE | ID: mdl-32802113

ABSTRACT

OBJECTIVE: This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS: Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS: PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS: These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...