Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-38948446

ABSTRACT

Motivation: Low-field MRI has garnered significant attention in recent years due to its unique advantages in safety, cost-effectiveness and accessibility. However, lower field strength comes with an inherently lower SNR as its primary limitation. Goals: In this work, we introduce a novel volume RF coil design using coupled stack-up resonators to mitigate this challenge. Approach: To demonstrate the proposed design, we take 0.5T as an example field strength and designed a prototype coupled stack-up volume coil operating in the 20MHz range. Results: Compared to the birdcage coil, the proposed design significantly improves RF field efficiency and homogeneity, ultimately enhancing the performance of low-field MRI. Impact: The proposed stack-up volume coil outperforms the standard birdcage coil in B1 efficiency and field homogeneity at low fields, ultimately improving the performance of low-field MRI and advancing its applications.

3.
PLoS One ; 19(7): e0305464, 2024.
Article in English | MEDLINE | ID: mdl-38959266

ABSTRACT

In the field of ultra-high field MR imaging, the challenges associated with higher frequencies and shorter wavelengths necessitate rigorous attention to multichannel array design. While the need for such arrays remains, and efforts to increase channel counts continue, a persistent impediment-inter-element coupling-constantly hinders development. This coupling degrades current and field distribution, introduces noise correlation between channels, and alters the frequency of array elements, affecting image quality and overall performance. The goal of optimizing ultra-high field MRI goes beyond resolving inter-element coupling and includes significant safety considerations related to the design changes required to achieve high-impedance coils. Although these coils provide excellent isolation, the higher impedance needs special design changes. However, such changes pose a significant safety risk in the form of strong electric fields across low-capacitance lumped components. This process may raise Specific Absorption Rate (SAR) values in the imaging subject, increasing power deposition and, as a result, the risk of tissue heating-related injury. To balance the requirement of inter-element decoupling with the critical need for safety, we suggest a new solution. Our method uses high-dielectric materials to efficiently reduce electric fields and SAR values in the imaging sample. This intervention tries to maintain B1 efficiency and inter-element decoupling within the existing array design, which includes high-impedance coils. Our method aims to promote the full potential of ultra-high field MRI by alleviating this critical safety concern with minimal changes to the existing array setup.


Subject(s)
Electric Impedance , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Humans , Radio Waves , Phantoms, Imaging , Equipment Design
4.
Article in English | MEDLINE | ID: mdl-38948448

ABSTRACT

Motivation: High performance RF coils are needed for better SNR so that higher resolution and spectral dispersion can be obtained in small animal MR imaging. Goals: To develop a surface coil with improved SNR over the conventional surface coil for small animal imaging at 7T. Approach: A small animal surface coil is designed based on multimodal surface coil technique. The coil is investigated and compared with conventional surface coil using full-wave electromagnetic simulations. Results: The multimodal surface coil shows superior B1 field efficiency and lower E field over standard coils, indicating a potential to gain SNR and resolution. Impact: The proposed multimodal surface coil can operate at high frequency and provides improved SNR over conventional surface coils at 7T, opening avenues for highly efficient coil design in small animal imaging, ultimately enabling the detection of previously indiscernible physiological details.

5.
Magn Reson Imaging ; 112: 107-115, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38971265

ABSTRACT

Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.


Subject(s)
Equipment Design , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Computer Simulation , Reproducibility of Results , Humans , Radio Waves , Magnetic Fields
6.
medRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38699318

ABSTRACT

Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B 1 ) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B 1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B 1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.

10.
Materials (Basel) ; 17(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473476

ABSTRACT

The properties of a catalyst support are closely related to the catalyst activity, yet the focus is often placed on the active species, with little attention given to the support properties. In this work, we specifically investigated the changes in support properties after the addition of P, as well as their impact on catalyst activity when used for catalyst preparation. We prepared the CeO2-ZrO2-P2O5-Al2O3 (CeZrPAl) composite oxides using the sol-gel, impregnation, and mechanical mixing methods, and characterized the support properties using techniques such as XRD, XPS, SEM-EDS, N2 adsorption-desorption, and Raman spectra. The results showed that the support prepared using the sol-gel method can exhibit a more stable phase structure, larger surface area, higher adsorption capacity for oxygen species, and greater oxygen storage capacity. The addition of an appropriate amount of P is necessary. On the one hand, the crystallization and growth of CePO4 can lead to a decrease in the Ce content in the cubic phase ceria-zirconia solid solution, resulting in a phase separation of the ceria-zirconia solid solution. On the other hand, CePO4 can lock some of the Ce3+/Ce4+ redox pairs, leading to a reduction in the adsorption of oxygen species and a decrease in the oxygen storage capacity of the CeZrPAl composite oxides. The research results indicated that the optimal P addition is 6 wt.% in the support. Therefore, we prepared a Pd/CeZrPAl catalyst using CeZrAl with 6 wt.% P2O5 as the support and conducted the catalytic oxidation of C3H8. Compared with the support without P added, the catalyst activity of the support loaded with P was significantly improved. The fresh and aged (1000 °C/5 h) catalysts decreased by 20 °C and 5 °C in T50 (C3H8 conversion temperature of 50%), and by 81 °C and 15 °C in T90 (C3H8 conversion temperature of 90%), respectively.

11.
IEEE Trans Biomed Eng ; PP2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38090865

ABSTRACT

OBJECTIVE: Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS: Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS: Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION: The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE: The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.

12.
ArXiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106453

ABSTRACT

Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.

13.
ArXiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38013888

ABSTRACT

The advent of low field open magnetic resonance imaging (MRI) systems has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated RF coil, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low field open MRI. The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Through rigorous analysis and empirical testing, we demonstrate the superior performance of the coupled stack-up volume coil in achieving improved transmit/receive efficiency and more uniform magnetic field distribution compared to traditional birdcage coils.

SELECTION OF CITATIONS
SEARCH DETAIL