Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38299379

ABSTRACT

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Subject(s)
Chitin , Flowers , Hypocreales , Oryza , Plant Diseases , Oryza/microbiology , Oryza/metabolism , Oryza/genetics , Plant Diseases/microbiology , Chitin/metabolism , Flowers/microbiology , Hypocreales/pathogenicity , Hypocreales/genetics , Hypocreales/metabolism , Signal Transduction , Host-Pathogen Interactions , Plant Proteins/metabolism , Plant Proteins/genetics , Virulence , Virulence Factors/metabolism , Virulence Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
2.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170415

ABSTRACT

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

3.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37752622

ABSTRACT

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Feedback , Arabidopsis/metabolism , Cell Death , Plant Diseases/genetics , Gene Expression Regulation, Plant/genetics
4.
Nat Plants ; 9(2): 228-237, 2023 02.
Article in English | MEDLINE | ID: mdl-36646829

ABSTRACT

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Oryza/genetics , Proteasome Endopeptidase Complex/metabolism , Catalase/genetics , Catalase/metabolism , Alleles , Hydrogen Peroxide/metabolism , Magnaporthe/metabolism , Plant Breeding , Plant Diseases , Gene Expression Regulation, Plant
5.
New Phytol ; 238(1): 367-382, 2023 04.
Article in English | MEDLINE | ID: mdl-36522832

ABSTRACT

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Disease Resistance , Ascomycota/physiology , Plant Diseases/microbiology
6.
Mol Plant ; 15(11): 1790-1806, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36245122

ABSTRACT

Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.


Subject(s)
Oryza , Oryza/genetics , Oryza/microbiology , Reactive Oxygen Species , Plant Diseases/genetics , Plant Diseases/microbiology , Flowers/genetics , Flowers/microbiology , Seeds
7.
New Phytol ; 236(6): 2216-2232, 2022 12.
Article in English | MEDLINE | ID: mdl-36101507

ABSTRACT

Rice production is threatened by multiple pathogens. Breeding cultivars with broad-spectrum disease resistance is necessary to maintain and improve crop production. Previously we found that overexpression of miR160a enhanced rice blast disease resistance. However, it is unclear whether miR160a also regulates resistance against other pathogens, and what the downstream signaling pathways are. Here, we demonstrate that miR160a positively regulates broad-spectrum resistance against the causative agents of blast, leaf blight and sheath blight in rice. Mutations of miR160a-targeted Auxin Response Factors result in different alteration of resistance conferred by miR160a. miR160a enhances disease resistance partially by suppressing ARF8, as mutation of ARF8 in MIM160 background partially restores the compromised resistance resulting from MIM160. ARF8 protein binds directly to the promoter and suppresses the expression of WRKY45, which acts as a positive regulator of rice immunity. Mutation of WRKY45 compromises the enhanced blast resistance and bacterial leaf blight resistance conferred by arf8 mutant. Overall, our results reveal that a microRNA coordinates rice broad-spectrum disease resistance by suppressing multiple target genes that play different roles in disease resistance, and uncover a new regulatory pathway mediated by the miR160a-ARF8 module. These findings provide new resources to potentially improve disease resistance for breeding in rice.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Magnaporthe/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Plant Breeding
8.
Rice (N Y) ; 15(1): 40, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35876915

ABSTRACT

Flower opening and stigma exertion are two critical traits for cross-pollination during seed production of hybrid rice (Oryza sativa L.). In this study, we demonstrate that the miR167d-ARFs module regulates stigma size and flower opening that is associated with the elongation of stamen filaments and the cell arrangement of lodicules. The overexpression of miR167d (OX167d) resulted in failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule, resulting in cleistogamy. Blocking miR167d by target mimicry also led to a morphological alteration of the individual floral organs, including a reduction in stigma size and alteration of lodicule cell morphology, but did not show the cleistogamous phenotype. In addition, the four target genes of miR167d, namely ARF6, ARF12, ARF17, and ARF25, have overlapping functions in flower opening and stigma size. The loss-of-function of a single ARF gene did not influence the flower opening and stigma size, but arf12 single mutant showed a reduced plant height and aborted apical spikelets. However, mutation in ARF12 together with mutation in either ARF6, ARF17, or ARF25 led to the same defective phenotypes that were observed in OX167d, including the failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule. These findings indicate that the appropriate expression of miR167d is crucial and the miR167d-ARFs module plays important roles in the regulation of flower opening and stigma size in rice.

9.
Front Plant Sci ; 13: 788876, 2022.
Article in English | MEDLINE | ID: mdl-35498644

ABSTRACT

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

10.
Plant J ; 110(1): 166-178, 2022 04.
Article in English | MEDLINE | ID: mdl-34997660

ABSTRACT

Many rice microRNAs have been identified as fine-tuning factors in the regulation of agronomic traits and immunity. Among them, Osa-miR535 targets SQUAMOSA promoter binding protein-like 14 (OsSPL14) to positively regulate tillers but negatively regulate yield and immunity. Here, we uncovered that Osa-miR535 targets another SPL gene, OsSPL4, to suppress rice immunity against Magnaporthe oryzae. Overexpression of Osa-miR535 significantly decreased the accumulation of the fusion protein SPL4TBS -YFP that contains the target site of Osa-miR535 in OsSPL4. Consistently, Osa-miR535 mediated the cleavage of OsSPL4 mRNA between the 10th and 11th base pair of the predicted binding site at the 3' untranslated region. Transgenic rice lines overexpressing OsSPL4 (OXSPL4) displayed enhanced blast disease resistance accompanied by enhanced immune responses, including increased expression of defense-relative genes and up-accumulated H2 O2 . By contrast, the knockout mutant osspl4 exhibited susceptibility. Moreover, OsSPL4 binds to the promoter of GH3.2, an indole-3-acetic acid-amido synthetase, and promotes its expression. Together, these data indicate that Os-miR535 targets OsSPL4 and OsSPL4-GH3.2, which may parallel the OsSPL14-WRKY45 module in rice blast disease resistance.


Subject(s)
Magnaporthe , Oryza , Carrier Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Magnaporthe/metabolism , Oryza/metabolism , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Plant Biotechnol J ; 20(4): 646-659, 2022 04.
Article in English | MEDLINE | ID: mdl-34726307

ABSTRACT

MicroRNAs (miRNAs) play vital roles in plant development and defence responses against various stresses. Here, we show that blocking miR1871 improves rice resistance against Magnaporthe oryzae and enhances grain yield simultaneously. The transgenic lines overexpressing miR1871 (OX1871) exhibit compromised resistance, suppressed defence responses and reduced panicle number resulting in slightly decreased yield. In contrast, the transgenic lines blocking miR1871 (MIM1871) show improved resistance, enhanced defence responses and significantly increased panicle number leading to enhanced yield per plant. The RNA-seq assay and defence response assays reveal that blocking miR1871 resulted in the enhancement of PAMP-triggered immunity (PTI). Intriguingly, miR1871 suppresses the expression of LOC_Os06g22850, which encodes a microfibrillar-associated protein (MFAP1) locating nearby the cell wall and positively regulating PTI responses. The mutants of MFAP1 resemble the phenotype of OX1871. Conversely, the transgenic lines overexpressing MFAP1 (OXMFAP1) or overexpressing both MFAP1 and miR1871 (OXMFAP1/OX1871) resemble the resistance of MIM1871. The time-course experiment data reveal that the expression of miR1871 and MFAP1 in rice leaves, panicles and basal internode is dynamic during the whole growth period to manipulate the resistance and yield traits. Our results suggest that miR1871 regulates rice yield and immunity via MFAP1, and the miR8171-MFAP1 module could be used in rice breeding to improve both immunity and yield.


Subject(s)
Magnaporthe , Oryza , Ascomycota , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Magnaporthe/physiology , Oryza/metabolism , Plant Breeding , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Rice (N Y) ; 14(1): 87, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674053

ABSTRACT

microRNAs act as fine-tuners in the regulation of plant growth and resistance against biotic and abiotic stress. Here we demonstrate that rice miR1432 fine-tunes yield and blast disease resistance via different modules. Overexpression of miR1432 leads to compromised resistance and decreased yield, whereas blocking miR1432 using a target mimic of miR1432 results in enhanced resistance and yield. miR1432 suppresses the expression of LOC_Os03g59790, which encodes an EF-hand family protein 1 (OsEFH1). Overexpression of OsEFH1 leads to enhanced rice resistance but decreased grain yield. Further study revealed that miR1432 and OsEFH1 are differentially responsive to chitin, a fungus-derived pathogen/microbe-associated molecular pattern (PAMP/MAMP). Consistently, blocking miR1432 or overexpression of OsEFH1 improves chitin-triggered immunity responses. In contrast, overexpression of ACOT, another target gene regulating rice yield traits, has no significant effects on rice blast disease resistance. Altogether, these results indicate that miR1432 balances yield and resistance via different target genes, and blocking miR1432 can simultaneously improve yield and resistance.

13.
Front Plant Sci ; 12: 729560, 2021.
Article in English | MEDLINE | ID: mdl-34527014

ABSTRACT

MicroRNAs fine-tune plant growth and resistance against multiple biotic and abiotic stresses. The trade-off between biomass and resistance can penalize crop yield. In this study, we have shown that rice miR530 regulates blast disease resistance, yield, and growth period. While the overexpression of miR530 results in compromised blast disease resistance, reduced grain yield, and late maturity, blocking miR530 using a target mimic (MIM530) leads to enhanced resistance, increased grain yield, and early maturity. Further study revealed that the accumulation of miR530 was decreased in both leaves and panicles along with the increase of age. Such expression patterns were accordant with the enhanced resistance from seedlings to adult plants, and the grain development from panicle formation to fully-filled seeds. Divergence analysis of miR530 precursor with upstream 1,000-bp promoter sequence in 11 rice species revealed that miR530 was diverse in Oryza sativa japonica and O. sativa indica group, which was consistent with the different accumulation of miR530 in japonica accessions and indica accessions. Altogether, our results indicate that miR530 coordinates rice resistance, yield, and maturity, thus providing a potential regulatory module for breeding programs aiming to improve yield and disease resistance.

14.
Front Plant Sci ; 12: 733245, 2021.
Article in English | MEDLINE | ID: mdl-34421978

ABSTRACT

Ustilaginoidea virens is a biotrophic fungal pathogen specifically colonizing rice floral organ and causes false smut disease of rice. This disease has emerged as a serious problem that hinders the application of high-yield rice cultivars, by reducing grain yield and quality as well as introducing mycotoxins. However, the pathogenic mechanisms of U. virens are still enigmatic. Here we demonstrate that U. virens employs a secreted protein UvCBP1 to manipulate plant immunity. In planta expression of UvCBP1 led to compromised chitin-induced defense responses in Arabidopsis and rice, including burst of reactive oxygen species (ROS), callose deposition, and expression of defense-related genes. In vitro-purified UvCBP1 protein competes with rice chitin receptor OsCEBiP to bind to free chitin, thus impairing chitin-triggered rice immunity. Moreover, UvCBP1 could significantly promote infection of U. virens in rice flowers. Our results uncover a mechanism of a floral fungus suppressing plant immunity and pinpoint a universal role of chitin-battlefield during plant-fungi interactions.

15.
Rice (N Y) ; 14(1): 26, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33677712

ABSTRACT

BACKGROUND: Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice. An increasing number of microRNAs (miRNAs) have been reported to fine-tune rice immunity against M. oryzae and coordinate with growth and development. RESULTS: Here, we showed that rice microRNA159a (Osa-miR159a) played a positive role in rice resistance to M. oryzae. The expression of Osa-miR159a was suppressed in a susceptible accession at 12, 24, and 48 h post-inoculation (hpi); it was upregulated in a resistant accession of M. oryzae at 24 hpi. The transgenic rice lines overexpressing Osa-miR159a were highly resistant to M. oryzae. In contrast, the transgenic lines expressing a short tandem target mimic (STTM) to block Osa-miR159a showed enhanced susceptibility. Knockout mutations of the target genes of Osa-miR159a, including OsGAMYB, OsGAMYBL, and OsZF, led to resistance to M. oryzae. Alteration of the expression of Osa-miR159a impacted yield traits including pollen and grain development. CONCLUSIONS: Our results indicated that Osa-miR159a positively regulated rice immunity against M. oryzae by downregulating its target genes. Proper expression of Osa-miR159a was critical for coordinating rice blast resistance with grain development.

16.
Nat Plants ; 7(2): 129-136, 2021 02.
Article in English | MEDLINE | ID: mdl-33594262

ABSTRACT

MicroRNA168 (miR168) is a key miRNA that targets Argonaute1 (AGO1), a major component of the RNA-induced silencing complex1,2. Previously, we reported that miR168 expression was responsive to infection by Magnaporthe oryzae, the causal agent of rice blast disease3. However, how miR168 regulates immunity to rice blast and whether it affects rice development remains unclear. Here, we report our discovery that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae. These results were validated through repeated tests in rice fields in the absence and presence of rice blast pressure. We found that the miR168-AGO1 module regulates miR535 to improve yield by increasing panicle number, miR164 to reduce flowering time, and miR1320 and miR164 to enhance immunity. Our discovery demonstrates that changes in a single miRNA enhance the expression of multiple agronomically important traits.


Subject(s)
Magnoliopsida/genetics , MicroRNAs/genetics , Oryza/genetics , Plant Breeding/methods , Plant Immunity/genetics , Plants, Genetically Modified/genetics , RNA, Plant/genetics , China , Gene Expression Regulation, Plant , Genes, Plant , Suppression, Genetic
17.
Rice (N Y) ; 14(1): 15, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33547972

ABSTRACT

Small RNAs (sRNAs) are mainly classified into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. miRNAs originate from single-stranded RNA precursors, whereas siRNAs originate from double-stranded RNA precursors that are synthesized by RNA-dependent RNA polymerases. Both of single-stranded and double-stranded RNA precursors are processed into sRNAs by Dicer-like proteins. Then, the sRNAs are loaded into ARGONAUTE proteins, forming RNA-induced silencing complexes (RISCs). The RISCs repress the expression of target genes with sequences complementary to the sRNAs through the cleavage of transcripts, the inhibition of translation or DNA methylation. Here, we summarize the recent progress of sRNA pathway in the interactions of rice with various parasitic organisms, including fungi, viruses, bacteria, as well as insects. Besides, we also discuss the hormone signal in sRNA pathway, and the emerging roles of circular RNAs and long non-coding RNAs in rice immunity. Obviously, small RNA pathway may act as a part of rice innate immunity to coordinate with growth and development.

18.
J Integr Plant Biol ; 63(2): 378-392, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33073904

ABSTRACT

Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.


Subject(s)
Annexins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Disease Resistance , Plant Diseases/microbiology , Adaptation, Physiological , Amino Acid Sequence , Annexins/chemistry , Annexins/genetics , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Ascomycota/physiology , Cell Death , Endoplasmic Reticulum/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Plant , Gene Silencing , Hydrogen Peroxide/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation/genetics , Necrosis , Salt Stress , Stress, Physiological
19.
New Phytol ; 229(1): 516-531, 2021 01.
Article in English | MEDLINE | ID: mdl-32767839

ABSTRACT

The Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) activates confined cell death and defense against different pathogens. However, the underlying regulatory mechanisms still remain elusive. Here, we show that RPW8.1 activates ethylene signaling that, in turn, negatively regulates RPW8.1 expression. RPW8.1 binds and stabilizes 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4), which may in part explain increased ethylene production and signaling in RPW8.1-expressing plants. In return, ACO4 and other key components of ethylene signaling negatively regulate RPW8.1-mediated cell death and disease resistance via suppressing RPW8.1 expression. Loss of function in ACO4, EIN2, EIN3 EIL1, ERF6, ERF016 or ORA59 increases RPW8.1-mediated cell death and defense response. By contrast, overexpression of EIN3 abolishes or significantly compromises RPW8.1-mediated cell death and disease resistance. Furthermore, ERF6, ERF016 and ORA59 appear to act as trans-repressors of RPW8.1, with OAR59 being able to directly bind to the RPW8.1 promoter. Taken together, our results have revealed a feedback regulatory circuit connecting RPW8.1 and the ethylene-signaling pathway, in which RPW8.1 enhances ethylene signaling, and the latter, in return, negatively regulates RPW8.1-mediated cell death and defense response via suppressing RPW8.1 expression to attenuate its defense activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascomycota/metabolism , Cell Death , Disease Resistance , Ethylenes , Feedback , Gene Expression Regulation, Plant , Plant Diseases , Plants, Genetically Modified/metabolism , Signal Transduction
20.
J Integr Plant Biol ; 62(5): 702-715, 2020 May.
Article in English | MEDLINE | ID: mdl-31001874

ABSTRACT

MicroRNAs (miRNAs) play important roles in rice response to Magnaporthe oryzae, the causative agent of rice blast disease. Studying the roles of rice miRNAs is of great significance for the disease control. Osa-miR167d belongs to a conserved miRNA family targeting auxin responsive factor (ARF) genes that act in developmental and stress-induced responses. Here, we show that Osa-miR167d plays a negative role in rice immunity against M. oryzae by suppressing its target gene. The expression of Osa-miR167d was significantly suppressed in a resistant accession at and after 24 h post inoculation (hpi), however, its expression was significantly increased at 24 hpi in the susceptible accession upon M. oryzae infection. Transgenic rice lines over-expressing Osa-miR167d were highly susceptible to multiple blast fungal strains. By contrast, transgenic lines expressing a target mimicry to block Osa-miR167d enhanced resistance to rice blast disease. In addition, knocking out the target gene ARF12 led to hyper-susceptibility to multiple blast fungal strains. Taken together, our results indicate that Osa-miR167d negatively regulate rice immunity to facilitate the infection of M. oryzae by downregulating ARF12. Thus, Osa-miR167d-ARF12 regulatory module could be valuable in improvement of blast-disease resistance.


Subject(s)
MicroRNAs/metabolism , Oryza/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs/genetics , Oryza/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...