Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 402
Filter
1.
Article in English | MEDLINE | ID: mdl-38967075

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) patients often benefit from EGFR inhibitors like gefitinib. However, drug resistance remains a significant challenge in treatment. The unique properties of 1,2,3-triazole, a nitrogen-based compound, hold promise as potential solutions due to its versatile structural attributes and diverse biological effects, including anticancer properties. MATERIALS AND METHODS: Our synthesis process involved the huisgen cycloaddition chemical method, which generated diverse icotinib derivatives. We evaluated the anticancer capabilities of these derivatives against various cancer cell lines, with a specific focus on NSCLC cells that exhibit drug resistance. Additionally, we investigated the binding affinity of selected compounds, including 3l, towards wild-type EGFR using surface plasmon resonance (SPR) experiments. RESULTS: Notably, icotinib derivatives such as derivative 3l demonstrated significant efficacy against different cancer cell lines, including those resistant to conventional therapies. Compound 3l exhibited potent activity with IC50 values below 10 µM against drug-resistant cells. SPR experiments revealed that 3l exhibited enhanced affinity towards wild-type EGFR compared to icotinib. Our research findings suggest that 3l acts as a compelling antagonist for the protein tyrosine kinase of EGFR (EGFR-PTK). CONCLUSION: Icotinib derivative 3l, featuring a 1,2,3-triazole ring, demonstrates potent anticancer effects against drug-resistant NSCLC cells. Its enhanced binding affinity to EGFR and modulation of the EGFR-RAS-RAF-MAPK pathway position 3l as a promising candidate for the future development of anticancer drugs.

2.
Inorg Chem ; 63(28): 13127-13135, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38946083

ABSTRACT

Chromium-based metal-organic frameworks (Cr-MOFs) are very attractive in a wide range of applications due to their robustness and high porosity. However, the kinetic inertness of chromium ions results in the synthesis of Cr-MOFs often taking prolonged reaction times, which limit their industrial applications. Herein, we report a novel synthesis strategy based on coordination substitution, which overcomes the kinetic inertness of chromium ions and can synthesize Cr-MOFs in a shorter time. The versatility of this strategy has been demonstrated by producing several known Cr-MOFs, such as TYUT-96Cr, MIL-100Cr, MIL-101Cr, and MIL-53Cr. PXRD, SEM, TEM, 77 K N2 adsorption, and TGA have proved that the Cr-MOFs synthesized using this new strategy have good crystallinity, high porosity, and excellent thermal stability. The synthesis mechanism was investigated using theoretical calculations.

3.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
4.
Animals (Basel) ; 14(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998099

ABSTRACT

The study determined the impacts of dietary fermented residues' (FBR) inclusion on growth, nutrient utilization, carcass characteristics, and meat properties in fattening pigs. Seventy-two robust pigs were randomly assigned to two experimental groups (Duroc × Landrace × Yorkshire, thirty-six pigs each). Each group was subjected to a 52-day trial, during which they received either a corn-soybean meal-based diet or diet enhanced with a 10% addition of FBR. Consequently, adding 10% FBR caused a significant decrease in the digestive utilization of crude dietary components in fattening pigs (p < 0.05) but showed no significant impact on the growth performance. Additionally, FBR inclusion increased the marbling scores (p < 0.05) and total antioxidant functions (p < 0.05) of muscle tissues, indicating improved meat quality. Gender affected backfat depth, with barrows showing thicker backfat depth. In conclusion, dietary supplementation with 10% FBR in finishing pigs influenced the meat quality by improving the marbling score and antioxidant performance while reducing digestibility without compromising growth performance.

5.
Sci Total Environ ; 946: 174457, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969137

ABSTRACT

Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO4- played crucial roles in the degradation. [SO4-]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO4-]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO4-. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.

6.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927604

ABSTRACT

Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.


Subject(s)
Brassica , CRISPR-Cas Systems , Gene Editing , Plants, Genetically Modified , Brassica/genetics , Gene Editing/methods , Plants, Genetically Modified/genetics
7.
J Hazard Mater ; 475: 134890, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876023

ABSTRACT

There is considerable inconsistency in results pertaining to the biomagnification of PAHs in aquatic systems. Zooplankton specifically play an important role controlling the fate and distribution of organic contaminants up the food chain, particularly in large plateau reservoirs. However, it remains largely unknown how secondary factors affect the magnification of organic compounds in zooplankton. The present study assessed plankton species and nutrients affecting the trophic transfer of PAHs through the micro-food chain in plateau reservoirs, Guizhou Province China. Results show soluble ∑PAHs range from 99.9 - 147.3 ng L-1, and concentrations of ∑PAHs in zooplankton range from 1003.2 - 22441.3, with a mean of 4460.7 ng g-1 dw. Trophic magnification factors (TMFs) > 1 show biomagnifications of PAHs from phytoplankton to zooplankton. The main mechanisms for trophic magnification > 1 are 1) small Copepoda, Cladocera and Rotifera are prey for larger N. schmackeri and P. tunguidus, and 2) the δ15N and TLs of zooplankton are increasing with the increasing nutrients TN, NO3- and CODMn. As a result, log PAHs concentrations in zooplankton are positively correlated with the trophic levels (TLs) of zooplankton, and log BAFs of the PAHs in zooplankton are increasing with increasing TLs and log Kow. Temperature further enhances TMFs and biomagnifications of PAHs as noted by temperature related reductions in δ15N. There are also available soluble PAHs in the water column which are assimilated with increasing phytoplankton biomass within the taxa groups, diatoms, dinoflagellates and chlorophytes. Notable TMFs of PAHs in zooplankton in Guizhou plateau reservoirs are not significantly affected by phytoplankton and zooplankton biomass dilutions. The present study demonstrates the important roles of species selection, nutrients and temperature in the environmental fate of PAHs in freshwaters.


Subject(s)
Food Chain , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Zooplankton , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , China , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Zooplankton/metabolism , Environmental Monitoring , Phytoplankton/metabolism , Nutrients/analysis , Nutrients/metabolism , Plankton/metabolism
8.
J Hazard Mater ; 474: 134827, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850953

ABSTRACT

In our work, a gravity-driven ceramic membrane bioreactor (GDCMBR) was developed to remove Mn2+ and NH3-N simultaneously through the birnessite water purification layer in-situ construction on the ceramic membrane due to chemical pre-oxidation (powdered activated carbon (PAC)-MnOx). Considering the trade-off of biofouling and water production, the daily intermittent short-term vertical aeration mode was involving to balance this contradiction with the excellent water purification and improved membrane permeability. And the GDCMBR permeability of operation flux was improved for 5-7 LHM with intermittent short-term vertical aeration. Furthermore, only ∼7 % irreversible membrane resistance (Rir) also confirmed the improved membrane permeability with intermittent short-term vertical aeration. And some manganese oxidizing bacteria (MnOB) and ammonia oxidizing bacteria (AOB) species at genus level were identified during long-term operation with the contact circulating flowing raw water, resulting in the better Mn2+ and NH3-N removal efficiency. Additionally, the nano-flower-like birnessite water purification layer was verified in ceramsite@PAC-MnOx coupled GDCMBR, which evolute into a porous flake-like structure with the increasing intermittent short-term aeration duration. Therefore, the sustainable and effective intermittent short-term aeration mode in ceramsite@PAC-MnOx coupled GDCMBR could improve the membrane permeability with the satisfactory groundwater purification efficiency, as well as providing an energy-efficient strategy for membrane technologies applications in water supply safety.


Subject(s)
Ammonia , Ceramics , Manganese , Membranes, Artificial , Permeability , Ceramics/chemistry , Manganese/chemistry , Ammonia/chemistry , Ammonia/metabolism , Water Purification/methods , Bioreactors , Charcoal/chemistry , Oxides/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nitrogen/chemistry , Nitrogen/metabolism , Manganese Compounds/chemistry , Gravitation , Bacteria/metabolism
9.
J Am Chem Soc ; 146(26): 17917-17923, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885126

ABSTRACT

The CO2 reduction reaction (CO2RR) pathway significantly dictates the reversibility and overpotential of aprotic Li-CO2 batteries; however, it has remained incompletely understood due to the lack of direct in situ spectroscopic evidence. Herein, the Li-CO2RR pathways at the model Au | dimethyl sulfoxide (DMSO) interface are interrogated using a combination of in situ isotope-labeled spectroscopy techniques and theoretical calculations. This obtained direct spectroscopic evidence presents that the primary CO2RR proceeds through the CO2-to-CO pathway (i.e., 2Li+ + 2CO2 + 2e- → CO + Li2CO3) initiated at a low overpotential (ca. 2.1 V vs Li/Li+), and the CO2-to-Li2C2O4 pathway (i.e., 2Li+ + 2CO2 + 2e- → Li2C2O4) initiated at a high overpotential (ca. 1.7 V vs Li/Li+), where the potential-dependent pathways critically depend on the coverage of LiCO2 intermediates. Simultaneously, the entire Li-CO2RR process is also accompanied by parasitic reactions to form gaseous C2H4 with COOH* as the crucial intermediate, which is induced by the H+-abstraction reaction between the reactive LiCO2 intermediate and the DMSO solvent. These fundamental insights enable us to establish a molecular picture for Li-CO2RR pathways in aprotic media and will serve as a crucial guideline for reversible Li-CO2 electrochemistry.

10.
Article in English | MEDLINE | ID: mdl-38842175

ABSTRACT

Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.

11.
J Hazard Mater ; 476: 134966, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901255

ABSTRACT

Ultrafiltration (UF) is widely used in drinking water plants; however, membrane fouling is unavoidable. Natural organic matter (NOM) is commonly considered as an important pollutant that causes membrane fouling. Herein, we proposed VUV/H2O2 as a UF pretreatment and used UV/H2O2 for comparison. Compared to UV/H2O2, the VUV/H2O2 system presented superior NOM removal. In the VUV/H2O2 system, the steady-state concentration of HO• was approximately twice that in the UV/H2O2 system, which was ascribed to the promoting effect of the 185 nm photons. Specifically, 185 nm photons promoted HO• generation by decomposing mainly H2O at a low H2O2 dose or by decomposing mainly H2O2 at a high H2O2 dose. The VUV/H2O2 pretreatment also demonstrated better membrane fouling mitigation performance than did UV/H2O2. An increase in the H2O2 dose promoted HO• generation, thereby enhancing the performance of NOM degradation and membrane fouling alleviation and shifting the major membrane fouling mechanism from cake filtration to standard blocking. The VUV/H2O2 (0.60 mM) pretreatment effectively reduced disinfection byproducts (DBPs) formation during chlorine disinfection. Additionally, the oxidant H2O2 affected the membrane surface morphology and performance but had no evident effect on the mechanical properties. In actual water treatment, the VUV/H2O2 pretreatment exhibited better performance than the UV/H2O2 pretreatment in easing membrane fouling, ameliorating water quality, and reducing DBPs formation and acute toxicity.

12.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
13.
Nat Commun ; 15(1): 3832, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714720

ABSTRACT

Herein, we develop a straightforward, metal-free, and acid-/base-free electrochemical C4-selective C - H deuteration of pyridine derivatives with economic and convenient D2O at room temperature. This strategy features an efficient and environmentally friendly approach with high chemo- and regioselectivity, affording a wide range of D-compounds, such as pyridines, quinolones, N-ligands and biorelevant compounds. Notably, the mechanistic experiments and cyclic voltammetry (CV) studies demonstrate that N-butyl-2-phenylpyridinium iodide is a crucial intermediate during the electrochemical transformation, which provides a general and efficient way for deuteration of pyridine derivatives.

14.
J Colloid Interface Sci ; 670: 385-394, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38772255

ABSTRACT

Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel-symmetrical battery reaches 1.1 × 10-4 S cm-1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.

15.
Diagn Microbiol Infect Dis ; 109(3): 116323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703530

ABSTRACT

PURPOSE: To evaluate the performance of a newly developed 2019-nCoV nucleic acid detection kit based on Ion Proton sequencing platform and make comparation with MGI Tech (DNBSEQ-G99) platform. METHODS: References and clinical samples were used to evaluate the precision, agreement rate, limit of detection (LOD), anti-interference ability and analytical specificity. Twenty-seven clinical specimens were used to make comparison between two platforms. RESULTS: The kit showed good intra-assay, inter-assay, inter-day precision between different operators and laboratories, fine agreement rate with references, a relatively low LOD of 1 × 103 copies/ml, anti-interference capability of 5 % whole blood and 1mg/ml mucin and no cross reaction with twenty-nine common clinical pathogens. Consistency of variant classification was observed between two platforms. The WGS from Ion Proton tended to have higher coverage and less missing data. CONCLUSIONS: The newly developed kit has shown satisfactory performances and excellent consistency with DNBSEQ-G99, making it a good alternative choice clinically.


Subject(s)
COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , Limit of Detection , High-Throughput Nucleotide Sequencing/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Reagent Kits, Diagnostic/standards
16.
Medicine (Baltimore) ; 103(17): e37949, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669359

ABSTRACT

Liver fibrosis is a critical factor in the advancement of nonalcoholic fatty liver disease towards cirrhosis. There is limited research exploring the association between obstructive sleep apnea (OSA) and liver fibrosis among community populations. The present study aimed to assess the association between sleep apnea (SA) and liver fibrosis based on the National Health and Nutrition Examination Survey (NHANES). Data were acquired from NHANES survey cycle 2017 to 2020. We assessed liver fibrosis by the median values of liver stiffness measurement (LSM). The diagnosis of SA was based on participants' response to sleep questionnaire. Univariate and multivariate logistic regression were used to validate the association of SA and liver fibrosis. A total of 7615 participants were included in this study. The LSM level of SA group was significantly higher than non-SA group. The proportion of liver fibrosis in SA group was markedly higher than that in non-SA group (14.0% vs 7.3%, P < .001). Univariate logistic analysis showed that SA was positively associated with liver fibrosis (OR = 2.068, 95%CI = 1.715-2.494, P < .001). Further multivariate logistic analysis revealed that SA was independently associated with increased risk of liver fibrosis after adjusting for confounding factors (OR = 1.277, 95%CI = 1.003-1.625, P = .048). The current study demonstrated an independent association between self-reported SA and increased risk of ultrasound-defined liver fibrosis in community-based sample.


Subject(s)
Liver Cirrhosis , Nutrition Surveys , Ultrasonography , Humans , Male , Female , Liver Cirrhosis/epidemiology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/complications , Middle Aged , Adult , Sleep Apnea Syndromes/epidemiology , Risk Factors , Cross-Sectional Studies , Aged , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/complications
17.
Front Pharmacol ; 15: 1321405, 2024.
Article in English | MEDLINE | ID: mdl-38560355

ABSTRACT

Backgroud: The co-administration of Chinese patent medicine with calcium channel blockers (CCBs) is a prevalent practice in China for treating essential hypertension (EH). However, robust evidence supporting the efficacy and safety of tailored combinations of different Chinese patent medicines with CCBs, according to individual patient conditions, is still limited. This study sought to elucidate the efficacy and safety of these combinations using a systematic review and network meta-analysis. Materials and methods: Relevant studies were sourced from established databases, incorporating randomized controlled trials published up to 1 February 2023. The ROB2 tool from the Cochrane Collaborative Network was employed to independently assess and cross-verify the quality of the included literature. A network meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 and PRISMA-Network Meta-Analyses (PRISMA-NMA) guidelines. A Bayesian network meta-analysis was utilized to gauge the efficacy and safety of distinct integrations of Chinese patent medicine and CCBs. Primary outcomes were interpreted using a paired fixed-effect meta-analysis. Publication bias was appraised through Egger's test and represented with funnel plots. All statistical analyses were executed within the R statistical framework. Results: Following rigorous selection, data extraction, and bias evaluation, 36 articles were incorporated. Tianma Gouteng Granule, when combined with CCBs, displayed superior efficacy in reducing systolic blood pressure (SBP). In terms of diastolic blood pressure (DBP) reduction, Songling Xuemaikang Capsule combined with CCBs emerged as the most effective. Regarding enhancement of antihypertensive effective rates, Qinggan Jiangya Capsule paired with CCBs demonstrated optimal results. For diminishing Traditional Chinese Medicine syndrome scores, the Qiangli Dingxuan Tablet and CCBs combination proved most beneficial. When aiming to reduce total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels, Tianma Gouteng Granule and CCBs showcased superior results. In contrast, the combination of Songling Xuemaikang Capsule and CCBs was more effective in reducing LDL-C, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Conclusion: This study underscores variability in outcomes from combining Chinese patent medicine and CCBs for hypertension, emphasizing the importance of personalized medicinal combinations, especially Tianma Gouteng Granule and Songling Xuemaikang Capsule. The results offer robust evidence to inform clinical guidelines for essential hypertention and significantly aid clinician in seleting appropriate Chinese patent medicines for treatment.

18.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611958

ABSTRACT

To satisfy the needs of precision machining, ultrafine tungsten carbide (WC)-based cemented carbide with fine grain size and excellent mechanical properties was prepared. Ultrafine cemented carbide was prepared by spark plasma sintering (SPS) using WC, Co as raw materials and metal elements V, and Cr as additives, and the effects of metal elements on the microstructure and mechanical properties of cemented carbide were investigated. The results show that the specimen (91.6WC-1.2V-1.2Cr-6Co) prepared at 1350 °C, 6 min, 25 MPa has the best mechanical properties (HV 2322.9, KIC 8.7 MPa·m1/2) and homogeneous microstructure. The metal elements could react with WC to form a (W, V, Cr) Cx segregation layer, which effectively inhibits the growth of WC grains (300 nm). The combination of SPS and metal element additives provides a new approach for the preparation of ultrafine cemented carbides with excellent properties.

19.
Adv Mater ; 36(21): e2313164, 2024 May.
Article in English | MEDLINE | ID: mdl-38577834

ABSTRACT

Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.

20.
PLoS One ; 19(4): e0299729, 2024.
Article in English | MEDLINE | ID: mdl-38578727

ABSTRACT

Urban agglomerations are sophisticated territorial systems at the mature stage of city development that are concentrated areas of production and economic activity. Therefore, the study of vulnerability from the perspective of production-living-ecological space is crucial for the sustainable development of the Yellow River Basin and global urban agglomerations. The relationship between productivity, living conditions, and ecological spatial quality is fully considered in this research. By constructing a vulnerability evaluation index system based on the perspectives of production, ecology, and living space, and adopting the entropy value method, comprehensive vulnerability index model, and obstacle factor diagnostic model, the study comprehensively assesses the vulnerability of the urban agglomerations along the Yellow River from 2001 to 2020. The results reveal that the spatial differentiation characteristics of urban agglomeration vulnerability are significant. A clear three-level gradient distribution of high, medium, and low degrees is seen in the overall vulnerability; these correspond to the lower, middle, and upper reaches of the Yellow River Basin, respectively. The percentage of cities with higher and moderate levels of vulnerability did not vary from 2001 to 2020, while the percentage of cities with high levels of vulnerability did. The four dimensions of economic development, leisure and tourism, resource availability, and ecological pressure are the primary determinants of the urban agglomeration's vulnerability along the Yellow River. And the vulnerability factors of various urban agglomerations showed a significant evolutionary trend; the obstacle degree values have declined, and the importance of tourism and leisure functions has gradually increased. Based on the above conclusions, we propose several suggestions to enhance the quality of urban development along the Yellow River urban agglomeration. Including formulating a three-level development strategy, paying attention to ecological and environmental protection, developing domestic and foreign trade, and properly planning and managing the tourism industry.


Subject(s)
Economic Development , Rivers , China , Biological Evolution , Cities , Factor Analysis, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...