Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Orthop Surg Res ; 19(1): 166, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443993

ABSTRACT

BACKGROUND: This work investigated the differences in the biomechanical properties of open reduction and internal fixation (ORIF) and percutaneous minimally invasive fixation (PMIF) for the fixation of calcaneal fractures (Sanders type II and III calcaneal fractures as examples) through finite element analysis. METHODS: Based on CT images of the human foot and ankle, according to the principle of three-point fixation, namely the sustentaculum tali, the anterior process and the calcaneal tuberosity were fixed. Three-dimensional finite element models of Sanders type II and III calcaneal fractures fixed by ORIF and PMIF were established. The proximal surfaces of the tibia, fibula and soft tissue were constrained, and ground reaction force and Achilles tendon force loads were added to simulate balanced standing. RESULTS: The maximum stress was 80.54, 211.59 and 113.88 MPa for the calcaneus, screws and plates in the ORIF group and 70.02 and 209.46 MPa for the calcaneus and screws in the PMIF group, respectively; the maximum displacement was 0.26, 0.21 and 0.12 mm for the calcaneus, screws and plates in the ORIF group and 0.20 and 0.14 mm for the calcaneus and screws in the PMIF group, respectively. The values obtained from the simulation were within the permissible stress and elastic deformation range of the materials used in the model, and there was no significant stress concentration. The maximum stress and displacement of the calcaneus and implants were slightly lower in the PMIF group than in the ORIF group when fixing Sanders type II and III calcaneal fractures. CONCLUSIONS: This study may provide a reference for optimising the design of implants, the development of individualised preoperative plans and the choice of clinical surgical approach.


Subject(s)
Ankle Injuries , Calcaneus , Fractures, Bone , Knee Injuries , Humans , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Open Fracture Reduction , Lower Extremity , Calcaneus/diagnostic imaging , Calcaneus/surgery
2.
Front Neurol ; 14: 1273341, 2023.
Article in English | MEDLINE | ID: mdl-37928138

ABSTRACT

Intracranial aneurysm (IA) counts are increasing yearly, with a high mortality and disability after rupture. Current diagnosis and treatment rely on costly equipment, lacking effective indicators for progression prediction and specific drugs for treatment. Recently, peripheral blood biomarkers, as common clinical test samples, reflecting the immune and inflammatory state of the body in real-time, have shown promise in providing additional information for risk stratification and treatment in IA patients, which may improve their outcomes after aneurysm rupture through anti-inflammatory therapy. Therefore, this paper reviewed the progress of potential biomarkers of IAs, including inflammatory blood indicators, cytokines, and blood lipids, aiming to aid individual management and therapy of aneurysms in clinical practices.

3.
Appl Bionics Biomech ; 2022: 6610753, 2022.
Article in English | MEDLINE | ID: mdl-36276584

ABSTRACT

Objectives: The patient rehabilitation transfer device is a typical personnel transfer equipment, which is mainly composed of outriggers, support arm, lifting arms, hooks, handrails, hydraulic cylinders, and other components. The existing research on the device is mainly focused on the configuration design and transfer mode, and the research on its dynamic characteristics during the transfer process has not been thoroughly discussed. Methodology. Based on the existing research, a portable hydraulic rehabilitation patient transfer device has been developed. Then the multi-rigid body dynamic and finite element flexible body models were established. Next, the dynamic characteristic difference between the two models of the device was studied. Results: As shown in the results, the finite element multi-flexible body model has obvious flexible vibration in the lifting stage, and the amplitude reaches 16 mm in the motion startup stage due to the influence of rigid-flexible coupling. The tip acceleration of the flexible body model was also influenced by the vibration, and the maximum acceleration value reaches 0.06 m/s2. According to the test results, the maximum acceleration of the terminal reaches 0.05 m/s2, which is close to the finite-element multi-flexible model simulation results. The experimentally measured natural frequency of the device is 3.1 Hz, which is also close to 3.2 Hz calculated by the simulation. Because the flexible component in the flexible model is only the lift arm, the natural frequency is slightly larger than the experimental value. Conclusion: According to the stress value of the finite element multi-body model motion process, the maximum stress appears at the moment when the motion reaches the top end, and the instantaneous stress reaches 206 Mpa, which is in line with the allowable stress range of the material design. The data obtained in this study will provide help for the follow-up clinical rehabilitation and intelligent device research.

4.
Mol Ecol Resour ; 21(6): 2093-2108, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33829635

ABSTRACT

The Arctic fox (Vulpes lagopus) is the only fox species occurring in the Arctic and has adapted to its extreme climatic conditions. Currently, the molecular basis of its adaptation to the extreme climate has not been characterized. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first V. lagopus genome assembly, which is assembled into chromosome fragments. The genome assembly has a total length of 2.345 Gb with a contig N50 of 31.848 Mb and a scaffold N50 of 131.537 Mb, consisting of 25 pseudochromosomal scaffolds. The V. lagopus genome had approximately 32.33% repeat sequences. In total, 21,278 protein-coding genes were predicted, of which 99.14% were functionally annotated. Compared with 12 other mammals, V. lagopus was most closely related to V. Vulpes with an estimated divergence time of ~7.1 Ma. The expanded gene families and positively selected genes potentially play roles in the adaptation of V. lagopus to Arctic extreme environment. This high-quality assembled genome will not only promote future studies of genetic diversity and evolution in foxes and other canids but also provide important resources for conservation of Arctic species.


Subject(s)
Foxes , Genome , Animals , Arctic Regions , Chromosomes , Foxes/genetics , Phylogeny , Sequence Analysis, DNA/methods
5.
Sheng Wu Gong Cheng Xue Bao ; 35(8): 1469-1477, 2019 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-31441618

ABSTRACT

The aim of this study was to screen the active regions and transcription factor binding sites in the promoter of the CBD103 gene related to Arctic fox coat color, and to provide a basis for revealing the molecular genetic mechanism of CBD103 gene regulating the coat color formation. The 5'-flanking region fragment 2 123 bp of Arctic fox CBD103 gene was cloned, and 4 truncated promoter reporter vectors of different lengths were constructed. The promoter activity was detected by the dual-luciferase reporter assay system. Point mutations were performed on the 3 predicted specificity protein 1 (Sp1) transcription factor binding sites in the highest promoter active region, and 3 mutant vectors were constructed. The activity was then detected by the dual-luciferase reporter assay system. The results showed that the region 1 656 (-1 604/+51) had the highest activity in the 4 truncated promoters of different lengths, and the promoter activity of the three mutant vectors constructed in this region were significantly lower than that of the wild type (fragment 1 656). The region of -1 604 /+51 was the core promoter region of CBD103 gene in Arctic fox and -1 552/-1 564, -1 439/-1 454 and -329/-339 regions were positive regulatory regions. This study successfully obtained the core promoter region and positive regulation regions of the Arctic fox CBD103 gene, which laid a foundation for further study on the molecular genetic mechanism of this gene regulating Arctic fox coat color.


Subject(s)
Promoter Regions, Genetic , Animals , Binding Sites , Foxes , Luciferases , Sp1 Transcription Factor , beta-Defensins
6.
Genomics ; 111(6): 1395-1403, 2019 12.
Article in English | MEDLINE | ID: mdl-30268779

ABSTRACT

Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.


Subject(s)
Chickens/genetics , Gene Regulatory Networks , Genome , Ovarian Follicle/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Chickens/classification , China , Female , Gene Expression Profiling , Ovarian Follicle/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...