Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.483
Filter
1.
Front Oncol ; 14: 1331472, 2024.
Article in English | MEDLINE | ID: mdl-38952547

ABSTRACT

Phosphoinositide 3-kinase (PI3K) inhibitors have shown synergistic anticancer effects with endocrine therapy against ER+/PIK3CA-mutated breast cancer. PI3K inhibitors for cancer therapy are becoming more common. There is an increasing need to understand their cardiac adverse events. In this report, we describe the features of near-fatal mixed arrhythmias in a patient who was undergoing a phase Ib clinical study of PI3Kα inhibitor with fulvestrant. Subsequently, the patient survived by cardiopulmonary resuscitation and therefore did not die. This case highlights that PI3K inhibitors can induce QT/QTc prolongation and predispose patients to TdP. The combination of QT/QTc prolongation in combination with prolonged cardiac repolarization, such as an AV block during treatment with PI3Kα inhibitor, may aggravate the occurrence of TdP. It is likely to be a safer strategy to adjust the standard of discontinuing drugs and continuing drugs (QTc interval was <500 and <60 ms at baseline) or choose other types of alternative treatment options. This report provided some ideas for clinicians to identify early and prevent the occurrence of fatal arrhythmias during anticancer treatment.

2.
J Environ Manage ; 366: 121630, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986381

ABSTRACT

The coupling of microscale zero-valent iron (mZVI) and anaerobic bacteria (AB) has gained increasing attention due to its ability to enhance dechlorination efficiency by combining the advantages of chemical and microbial reduction. However, the implementation of these coupling technologies at the field scale is challenging in terms of sustainability goals due to the coexistence of various natural electron acceptors in groundwater, which leads to limited electron selectivity and increased secondary risk. Therefore, this study used trichloroethylene (TCE) as a probe contaminant and nitrate (NO3-) as a typical co-occurring natural electron acceptor to optimize the overall sustainable remediation performance of an mZVI/AB coupled system by adjusting the mZVI particle size and dosage. Results revealed that mZVI particles of different sizes exhibit different microorganism activation capabilities. In contrast to its 2 µm and 7 µm counterparts, the 30 µm mZVI/AB system demonstrated a strong dosage-dependency in TCE removal and its product selectivity. Finally, multi-criteria analysis (MCA) methods were established to comprehensively rank the alternatives, and 30 µm mZVI (15 g/L dosage) was determined to be the best remediation strategy with the highest total sustainability score under all studied hydro-chemical conditions when equal weights were applied to technical, environmental, and economic indicators. Our work provides a paradigm for comprehensively assessing the sustainable remediation performance of chlorinated aliphatic hydrocarbons polluted groundwater in practical applications.

3.
J Med Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989847

ABSTRACT

Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound 37 exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines. It induced dose-dependent MYC degradation in cells with degradation observed at the concentration as low as 1.0 µM. Meanwhile, its direct suppression of MYC function was confirmed by the capability to inhibit the binding of MYC/MYC-associated protein X (MAX) heterodimer to DNA consensus sequence, induce MYC thermal instability, and disturb MYC/MAX interaction. Moreover, 37 demonstrated enhanced therapeutic efficacy over MYCi975 in a mouse allograft model of prostate cancer. Overall, 37 deserves further development for exploring MYC-targeting cancer therapeutics.

4.
J Hazard Mater ; 476: 135091, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959828

ABSTRACT

The relative severity between chromium (Cr)-mediated ecotoxicity and its bioaccumulation has rarely been compared and evaluated. This study employed pot incubation experiments to simulate the soil environment with increased Cr pollution and study their effects on the growth of crops, including pepper, lettuce, wheat, and rice. Results showed that increasing total Cr presented ascendant ecotoxicity in upland soils when pH > 7.5, and significantly reduced the yield of pepper, lettuce and wheat grain by 0.3-100 %, whereas, this effect was weakened even reversed as the pH decreased. Surprisingly, a series of soils with Cr concentration of 22.7-623.5 mg kg-1 did not cause Cr accumulation in four crops over the Chinese permissible limit. The toxicity of Cr was highly associated with extractable Cr, where Cr (VI) made the greater contributions than Cr (III). Conclusively, the ecotoxicity of Cr poses a greater environmental issue as compared to the bioaccumulation of Cr in crops in upland soils, while extractable Cr (VI) makes the predominant contributions to the ecotoxicity of Cr as the total Cr increased. Our study proposes a synchronous consideration involving total Cr and Cr (VI) as the theoretical basis to establish a more reliable soil quality standard for safe production in China.

5.
Opt Lett ; 49(12): 3448-3451, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875642

ABSTRACT

High-power semiconductor lasers with stabilized wavelengths are recognized as exemplary pumping sources for solid-state lasers. This study introduces distributed feedback (DFB) laser diode arrays designed to maintain an extensive temperature locking range. We report experimentally on high-power 808 nm DFB laser diode arrays. The first-order sinusoidal grating was fabricated using nanoimprint lithography, succeeded by inductively coupled plasma (ICP) dry etching and subsequent wet polishing. These 808 nm DFB laser diode arrays have demonstrated a measured output power of 134 W under a pulsed current of 150 A, with the heat sink temperature maintained at 25°C. The slope efficiency was determined to be 1.1 W/A. At a current of 150 A, the laser operated with a narrow spectral width over a wide temperature range, extending from -30 to 90°C, with a temperature drift coefficient of 0.0595 nm/K.

6.
Small ; : e2403412, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934550

ABSTRACT

Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.

7.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Article in English | MEDLINE | ID: mdl-38882546

ABSTRACT

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Subject(s)
Doxorubicin , Telomerase , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Telomerase/metabolism , Cell Line, Tumor , Mice , DNA/chemistry , DNA/pharmacokinetics , DNA/administration & dosage , Tissue Distribution , Nanoparticles/chemistry , Neoplasms/drug therapy , Ferroptosis/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
8.
Nat Sci Sleep ; 16: 787-800, 2024.
Article in English | MEDLINE | ID: mdl-38894977

ABSTRACT

Purpose: Clinical studies have demonstrated the intricate association between the onset and progression of obstructive sleep apnea (OSA) and the activation of the inflammatory cascade reaction. This study delves into investigating the causal links between 91 circulating inflammatory proteins (CIPs) and OSA through the application of Mendelian randomization (MR) techniques. Methods: Utilizing genetic data on OSA sourced from the Finnish Biobank (FinnGen) Genome-wide Association Studies (GWAS) of the European population, alongside summary-level GWAS data of CIPs from 14,824 European participants, we conducted a bidirectional MR study. Results: This study suggests that several factors may be associated with the risk of OSA. IL-17C (odds ratio (OR) = 1.090, p = 0.0311), CCL25 (OR = 1.079, p = 0.0493), FGF-5 (OR = 1.090, p = 0.0003), CD5 (OR = 1.055, p = 0.0477), and TNFSF14 (OR = 1.092, p = 0.0008) may positively correlate with OSA risk. Conversely, IL-20RA (OR = 0.877, p = 0.0107), CCL19 (OR = 0.933, p = 0.0237), MIP-1 alpha (OR = 0.906, p = 0.0042), Flt3L (OR = 0.941, p = 0.0019), CST5 (OR = 0.957, p = 0.0320), OPG (OR = 0.850, p = 0.0001), and TRAIL (OR = 0.956, p = 0.0063) may reduce the risk of OSA. Additionally, elevated levels of IL-10RA (OR = 1.153, p = 0.0478) were observed as a consequence of OSA. Conversely, OSA may potentially lead to decreased levels of CCL28 (OR = 0.875, p = 0.0317), DNER (OR = 0.874, p = 0.0324), FGF-21 (OR = 0.846, p = 0.0344), and CSF-1 (OR = 0.842, p = 0.0396). Conclusion: Through this bidirectional MR study, we have identified 12 upstream regulatory proteins and 5 downstream effect proteins that are linked to OSA. These findings hold promise in providing potential therapeutic targets for the inflammatory mechanisms underlying OSA.

9.
Plant Cell Environ ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828861

ABSTRACT

Cadmium (Cd) is a toxic metal that poses serious threats to human health. Rice is a major source of dietary Cd but how rice plants transport Cd to the grain is not fully understood. Here, we characterize the function of the ZIP (ZRT, IRT-like protein) family protein, OsZIP2, in the root-to-shoot translocation of Cd and intervascular transfer of Cd in nodes. OsZIP2 is localized at the plasma membrane and exhibited Cd2+ transport activity when heterologously expressed in yeast. OsZIP2 is strongly expressed in xylem parenchyma cells in roots and in enlarged vascular bundles in nodes. Knockout of OsZIP2 significantly enhanced root-to-shoot translocation of Cd and alleviated the inhibition of root elongation by excess Cd stress; whereas overexpression of OsZIP2 decreased Cd translocation to shoots and resulted in Cd sensitivity. Knockout of OsZIP2 increased Cd allocation to the flag leaf but decreased Cd allocation to the panicle and grain. We further reveal that the variation of OsZIP2 expression level contributes to grain Cd concentration among rice germplasms. Our results demonstrate that OsZIP2 functions in root-to-shoot translocation of Cd in roots and intervascular transfer of Cd in nodes, which can be used for breeding low Cd rice varieties.

10.
Front Psychol ; 15: 1412708, 2024.
Article in English | MEDLINE | ID: mdl-38911961

ABSTRACT

The family is the first classroom for children and adolescents to learn and grow, and parents' behavior plays an important role in influencing their children's development, which is also evident in the process of sport participation. The main purpose of this study is to summarise the specific theoretical and practical experiences of parents in sport parenting based on a comprehensive review of the types and functions that constitute parental involvement in sport parenting and the process of their practice. To this end, this study used narrative research as the main research method and searched the literature related to parents' involvement in parenting through sport using the Web of Science database. Using the theoretical underpinnings of parents' implementation of sport parenting and their role practice, studies were screened and 39 pieces of literature were finally obtained. The study found that in terms of theoretical underpinnings, the existing types of parental involvement in sport parenting can be broadly categorized into four types: authoritative, authoritarian, permissive and rejecting-neglecting. The functions of parental involvement in sport education have two dimensions: promoting sport development and promoting socialization. Based on a review of their theories, we further summarise and conclude the consequences of action and appropriate practices of parental practices in three scenarios: on the sports field, on the way home and in the private space. It is assumed that parents, when participating in sports parenting, need to: (I) regulate their own behavior in order to avoid psychological pressure on their children due to inappropriate behavior; (II) play different roles at different stages of their children's sports development; (III) should not put too much pressure on their children's performance. Based on these reviews of the theory and practice of parental involvement in sport parenting, this study further examines the theoretical limitations of the established research. It is argued that future research should pay attention to the differences between the identities and expectations of parents or children of different genders about their sport parenting, in addition to the differences in parental involvement in sport parenting and different practices in different cultural contexts.

11.
J Hazard Mater ; 475: 134884, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878434

ABSTRACT

Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 µg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 µg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.


Subject(s)
Escherichia coli , Gene Transfer, Horizontal , Plasmids , Reactive Oxygen Species , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Nanoparticles/toxicity , Drug Resistance, Microbial/genetics , Polystyrenes/chemistry , Sunlight , Drug Resistance, Bacterial/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism
12.
Medicine (Baltimore) ; 103(25): e38617, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905422

ABSTRACT

BACKGROUND: Vertebral artery stump syndrome (VASS) is a cause of acute stroke. Owing to the particularity of the pathogenesis of VASS, interventional treatment of VASS is difficult. Common mechanical thrombectomy approaches include femoral and radial artery approaches. However, conventional approaches may not be suitable for VASS. If effective measures are not taken to open offending vessels in time, this can lead to a high rate of disability. In recent years, no consensus has been reached regarding surgical methods for treating VASS. PATIENT CONCERNS: The patient presented to the emergency department with a 2-hour history of disturbance of consciousness. DIAGNOSIS: After neurological and magnetic resonance imaging examinations, the patient was diagnosed with acute large vessel occlusive posterior circulation cerebral infarction. METHODS: The patient's symptoms were not relieved after intravenous infusion of argatroban (10 mg) at a local hospital. We first attempted to open the occluded vertebral artery through normal approaches but failed. We then punctured the vertebral artery, successfully opened the occluded vertebral artery, and performed mechanical thrombectomy. RESULTS: The patient underwent successful vertebral artery puncture and mechanical thrombectomy, with no evidence of postoperative bleeding or vascular injury at the puncture site. The patient regained consciousness the day after surgery but remained impaired in physical activity. After 4 months of rehabilitation, the patient recovered completely. CONCLUSION: When the conventional approach cannot meet the requirements of mechanical thrombectomy, reverse puncture of the vertebral artery is a feasible surgical method for patients with VASS. However, due to the small number of cases, a series of safety problems such as potential puncture failure, hemorrhage after puncture, and vascular occlusion still need to be further explored.


Subject(s)
Vertebral Artery , Vertebrobasilar Insufficiency , Humans , Vertebral Artery/diagnostic imaging , Vertebral Artery/surgery , Vertebrobasilar Insufficiency/surgery , Male , Punctures/methods , Basilar Artery/surgery , Basilar Artery/diagnostic imaging , Thrombectomy/methods , Middle Aged , Arterial Occlusive Diseases/surgery , Aged
13.
Emerg Microbes Infect ; 13(1): 2366359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38855910

ABSTRACT

Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.


Subject(s)
Coinfection , Granuloma , HIV Infections , Lung , Macrophages , Receptors, Interleukin-6 , STAT3 Transcription Factor , Humans , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV Infections/complications , HIV Infections/immunology , Macrophages/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Granuloma/immunology , Lung/pathology , Lung/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/complications , Female , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , CD68 Molecule
14.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824133

ABSTRACT

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Subject(s)
DNA Damage , Exodeoxyribonucleases , Phosphoproteins , Animals , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Mice , Recombinational DNA Repair , Phenotype , Mutation , Drosophila/genetics , Aging/genetics , Aging/metabolism , Female , Drosophila melanogaster/genetics , Male , Retinal Diseases , Vascular Diseases , Hereditary Central Nervous System Demyelinating Diseases
15.
Chembiochem ; : e202400305, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825577

ABSTRACT

Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.

16.
Chin J Integr Med ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850483

ABSTRACT

OBJECTIVE: To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma. METHODS: In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously. RESULTS: In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01). CONCLUSIONS: Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.

17.
Mol Microbiol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38922722

ABSTRACT

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.

18.
J Hazard Mater ; 474: 134801, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843630

ABSTRACT

The environmental pollution of organic ultraviolet absorbers (UVAs) has attracted global attention. However, the distribution, sources and risk assessment of UVAs in air from plastic greenhouses are rarely reported. This study was the first to investigate the concentrations of ten UVAs in the air samples from plastic greenhouses. The total concentrations of ten UVAs (∑10UVAs) in the air samples ranged from 5.7 × 103 ng/m3 to 6.3 × 103 ng/m3 (median 5.7 × 103 ng/m3) in greenhouses covered with biodegradable mulch film, 288.2 ng/m3 to 376.4 ng/m3 (median 333.9 ng/m3) in greenhouses covered with PE mulch film, and 97.9 ng/m3 to 142.6 ng/m3 (median 114.9 ng/m3) in greenhouses covered without mulch film. The concentrations of ten UVAs in 65 commercial agricultural films were simultaneously analyzed. Additionally, the potential health risks for greenhouse workers exposed to UVAs were estimated. And the migration simulations showed that the health risk in greenhouses may be higher even if only one UVA is added to the biodegradable mulch film. Therefore, the exposure risk of UVAs in plastic greenhouses needs to be highly prioritized.


Subject(s)
Inhalation Exposure , Plastics , Ultraviolet Rays , Humans , Risk Assessment , Inhalation Exposure/analysis , Occupational Exposure/analysis , Agriculture , Gases/analysis , Air Pollutants/analysis , Particulate Matter/analysis
19.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2754-2765, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812176

ABSTRACT

This study deciphered the ameliorating effect and molecular mechanism of the total glucosides of White Paeony Capsules(TGP) in the treatment of mice model with acute lung injury(ALI) via NOD-like receptor thermal protein domain associated protein 3(NLRP3) signaling pathway of the inflammasome. The study established an inflammasome activation model of primed bone marrow-derived macrophages(BMDMs), and its molecular mechanism was investigated by Western blot(WB), immunofluorescence staining, enzyme-linked immunosorbent assay(ELISA), and flow cytometry. C57BL/6J mice were randomly divided into a blank control group, a TGP group, a model group(LPS group), LPS+low-and high-dose TGP groups, LPS+MCC950 group, and LPS+MCC950+TGP group, with eight mice per group. The ALI model was induced in mice. Finally, bronchoalveolar lavage fluid(BALF) and lung tissue were collected. Lung index and lung weight wet-to-dry ratio were determined for each group of mice. The pathological changes in lung tissue were observed through hematoxylin-eosin(HE) staining. The number of neutrophils in the BALF of each group was detected using flow cytometry. The levels of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α in the BALF were determined by ELISA. The expressions of IL-1ß, IL-18, IL-6, and TNF-α in the lung tissue were determined by real-time quantitative PCR(RT-qPCR). This study demonstrated that TGP dramatically blocked the activation of the NLRP3 inflammasome by inhibiting the production of upstream mitochondrial reactive oxygen species(mtROS) and the subsequent oligomerization of apoptosis-associated specks(ASC). Additionally, in the ALI mice model, compared with the blank control group, the model group showed alveolar structure rupture, thic-kening of alveolar septa, and dramatically increased lung index, lung weight wet-to-dry ratio in lung tissue, neutrophil count, and inflammatory factor levels. Compared with the model group, the pathological morphology of lung tissue was significantly ameliorated in the TGP and MCC950 groups, and the lung index and lung weight wet-to-dry ratio were significantly reduced. Neutrophil counts were reduced, and levels of inflammatory factors were significantly downregulated. Notably, compared with the MCC950 group, there was no significant difference in effect in the MCC950+TGP group. Collectively, the study reveals that TGP may ameliorate ALI in mice by inhibiting the activation of NLRP3 inflammasome, providing a safe and effective drug candidate for the prevention or treatment of ALI/ARDS.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Glucosides , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Paeonia , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glucosides/pharmacology , Glucosides/chemistry , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Paeonia/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Capsules , Lung/drug effects , Lung/immunology , Lung/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism
20.
Kidney Int Rep ; 9(5): 1441-1450, 2024 May.
Article in English | MEDLINE | ID: mdl-38707809

ABSTRACT

Introduction: Genetic testing is increasingly utilized in nephrology practice, but limited real-world data exist on variant reclassification following renal genetics testing. Methods: A cohort of patients at the Cleveland Clinic Renal Genetics Clinic who underwent genetic testing through clinical laboratories was assessed with their clinical and laboratory data analyzed. Results: Between January 2019 and June 2023, 425 new patients with variable kidney disorders from 413 pedigrees completed genetic testing through 10 clinical laboratories, including 255 (60%) females with median (25th, 75th percentiles) age of 36 (22-54) years. Multigene panel was the most frequently used modality followed by single-gene testing, exome sequencing (ES), chromosomal microarray (CMA), and genome sequencing (GS). At initial report, 52% of patients had ≥1 variants of uncertain significance (VUS) with or without concurrent pathogenic variant(s). Twenty amendments were issued across 19 pedigrees involving 19 variants in 17 genes. The overall variant reclassification rate was 5%, with 63% being upgrades and 32% downgrades. Of the reclassified variants, 79% were initially reported as VUS. The median time-to-amendments from initial reports was 8.4 (4-27) months. Following the variant reclassifications, 60% of the patients received a new diagnosis or a change in diagnosis. Among these, 67% of patients received significant changes in clinical management. Conclusion: Variant reclassification following genetic testing is infrequent but important for diagnosis and management of patients with suspected genetic kidney disease. The majority of variant reclassifications involve VUS and are upgrades in clinically issued amended reports. Further studies are needed to investigate the predictors of such events.

SELECTION OF CITATIONS
SEARCH DETAIL
...