Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1124039, 2023.
Article in English | MEDLINE | ID: mdl-36923424

ABSTRACT

Chimeric antigen receptor-T (CAR-T) cells and antibody-drug conjugates (ADCs) are promising therapeutic strategies in oncology. The carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is overexpressed in tumors including non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC), and is an attractive target for therapies based on CAR-T cell or/and ADCs. We previously developed a highly specific antibody-based CAR-T cells targeting CEACAM5 and the tumoricidal effect of CAR-T cells was proved against neuro-endocrine prostate cancer (NEPC) cells expressing CEACAM5. Here, we compare the anti-tumor efficacy of our CAR-T cells with that of an anti-CEACAM5 ADC being clinically evaluated against NSCLC. Our anti-CEACAM5 CAR-T cells showed cytotoxicity in a CEACAM5 surface concentration dependent manner and reduced tumor growth in both ADC-responsive and -non-responsive CEACAM5-expressing NSCLC cells in vitro and in vivo. In contrast, the ADC exhibited cytotoxicity independent on the CEACAM5 cell surface concentration. Even though clinical translation of CEACAM5 targeting CAR-T cell therapies is still in preclinical stage, our CAR-T cell approach could provide a potential therapeutic strategy for CEACAM5-positive cancer patients with resistance to ADCs.

2.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36460335

ABSTRACT

BACKGROUND: Antibody-drug conjugates (ADCs) that deliver cytotoxic drugs to tumor cells have emerged as an effective and safe anticancer therapy. ADCs may induce immunogenic cell death (ICD) to promote additional endogenous antitumor immune responses. Here, we characterized the immunomodulatory properties of D3-GPC2-PBD, a pyrrolobenzodiazepine (PBD) dimer-bearing ADC that targets glypican 2 (GPC2), a cell surface oncoprotein highly differentially expressed in neuroblastoma. METHODS: ADC-mediated induction of ICD was studied in GPC2-expressing murine neuroblastomas in vitro and in vivo. ADC reprogramming of the neuroblastoma tumor microenvironment was profiled by RNA sequencing, cytokine arrays, cytometry by time of flight and flow cytometry. ADC efficacy was tested in combination with macrophage-driven immunoregulators in neuroblastoma syngeneic allografts and human patient-derived xenografts. RESULTS: The D3-GPC2-PBD ADC induced biomarkers of ICD, including neuroblastoma cell membrane translocation of calreticulin and heat shock proteins (HSP70/90) and release of high-mobility group box 1 and ATP. Vaccination of immunocompetent mice with ADC-treated murine neuroblastoma cells promoted T cell-mediated immune responses that protected animals against tumor rechallenge. ADC treatment also reprogrammed the tumor immune microenvironment to a proinflammatory state in these syngeneic neuroblastoma models, with increased tumor trafficking of activated macrophages and T cells. In turn, macrophage or T-cell inhibition impaired ADC efficacy in vivo, which was alternatively enhanced by both CD40 agonist and CD47 antagonist antibodies. In human neuroblastomas, the D3-GPC2-PBD ADC also induced ICD and promoted tumor phagocytosis by macrophages, which was further enhanced when blocking CD47 signaling in vitro and in vivo. CONCLUSIONS: We elucidated the immunoregulatory properties of a GPC2-targeted ADC and showed robust efficacy of combination immunotherapies in diverse neuroblastoma preclinical models.


Subject(s)
Immunoconjugates , Neuroblastoma , Humans , Mice , Animals , Glypicans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , CD47 Antigen , Neuroblastoma/drug therapy , Macrophages , Tumor Microenvironment
3.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34971569

ABSTRACT

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Subject(s)
Glypicans/immunology , Immunotherapy, Adoptive , Neuroblastoma/drug therapy , Receptors, Antigen, T-Cell/metabolism , Animals , Cell Line, Tumor , Glypicans/metabolism , Humans , Immunotherapy/methods , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
4.
Transl Oncol ; 14(12): 101232, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34601396

ABSTRACT

The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.

5.
Mol Cancer Ther ; 20(11): 2228-2239, 2021 11.
Article in English | MEDLINE | ID: mdl-34465595

ABSTRACT

Antibody-drug conjugates (ADC) are a targeted cancer therapy that utilize the specificity of antibodies to deliver potent drugs selectively to tumors. Here we define the complex interaction among factors that dictate ADC efficacy in neuroblastoma by testing both a comprehensive panel of ADC payloads in a diverse set of neuroblastoma cell lines and utilizing the glypican 2 (GPC2)-targeting D3-GPC2-PBD ADC to study the role of target antigen density and antibody internalization in ADC efficacy in neuroblastoma. We first find that DNA binding drugs are significantly more cytotoxic to neuroblastomas than payloads that bind tubulin or inhibit DNA topoisomerase 1. We additionally show that neuroblastomas with high expression of the ABCB1 drug transporter or that harbor a TP53 mutation are significantly more resistant to tubulin and DNA/DNA topoisomerase 1 binding payloads, respectively. Next, we utilized the GPC2-specific D3-GPC2-IgG1 antibody to show that neuroblastomas internalize this antibody/GPC2 complex at significantly different rates and that these antibody internalization kinetics correlate significantly with GPC2 cell surface density. However, sensitivity to pyrrolobenzodiazepine (PBD) dimers primarily dictated sensitivity to the corresponding D3-GPC2-PBD ADC, overall having a larger influence on ADC efficacy than GPC2 cell surface density or antibody internalization. Finally, we utilized GPC2 isogenic Kelly neuroblastoma cells with different levels of cell surface GPC2 expression to define the threshold of target density required for ADC efficacy. Taken together, DNA binding ADC payloads should be prioritized for development for neuroblastoma given their superior efficacy and considering that ADC payload sensitivity is a major determinant of ADC efficacy.


Subject(s)
Antibodies/metabolism , Immunoconjugates/therapeutic use , Neuroblastoma/drug therapy , Humans , Immunoconjugates/pharmacology
6.
Cell Rep Med ; 2(7): 100344, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34337560

ABSTRACT

Glypican 2 (GPC2) is a MYCN-regulated, differentially expressed cell-surface oncoprotein and target for immune-based therapies in neuroblastoma. Here, we build on GPC2's immunotherapeutic attributes by finding that it is also a highly expressed, MYCN-driven oncoprotein on small-cell lung cancers (SCLCs), with significantly enriched expression in both the SCLC and neuroblastoma stem cell compartment.By solving the crystal structure of the D3-GPC2-Fab/GPC2 complex at 3.3 Å resolution, we further illustrate that the GPC2-directed antibody-drug conjugate (ADC; D3-GPC2-PBD), that links a human GPC2 antibody (D3) to DNA-damaging pyrrolobenzodiazepine (PBD) dimers, binds a tumor-specific, conformation-dependent epitope of the core GPC2 extracellular domain. We then show that this ADC induces durable neuroblastoma and SCLC tumor regression via induction of DNA damage, apoptosis, and bystander cell killing, notably with no signs of ADC-induced in vivo toxicity. These studies provide preclinical data to support the clinical translation of ADCs targeting GPC2.


Subject(s)
Epitopes/chemistry , Epitopes/metabolism , Glypicans/immunology , Immunoconjugates/pharmacology , Lung Neoplasms/pathology , Neuroblastoma/pathology , Small Cell Lung Carcinoma/pathology , Animals , Bystander Effect/drug effects , Cell Compartmentation , Cell Death/drug effects , Cell Membrane/metabolism , DNA Damage , Female , Humans , Mice, Inbred C57BL , Mice, SCID , N-Myc Proto-Oncogene Protein/metabolism , Oncogene Proteins/metabolism , Protein Conformation
7.
Proc Natl Acad Sci U S A ; 117(47): 29832-29838, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33139569

ABSTRACT

Effective therapies are urgently needed for the SARS-CoV-2/COVID-19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from large phage-displayed Fab, scFv, and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. A high-affinity Fab was selected from one of the libraries and converted to a full-size antibody, IgG1 ab1, which competed with human ACE2 for binding to RBD. It potently neutralized replication-competent SARS-CoV-2 but not SARS-CoV, as measured by two different tissue culture assays, as well as a replication-competent mouse ACE2-adapted SARS-CoV-2 in BALB/c mice and native virus in hACE2-expressing transgenic mice showing activity at the lowest tested dose of 2 mg/kg. IgG1 ab1 also exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection. The mechanism of neutralization is by competition with ACE2 but could involve antibody-dependent cellular cytotoxicity (ADCC) as IgG1 ab1 had ADCC activity in vitro. The ab1 sequence has a relatively low number of somatic mutations, indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 did not aggregate, did not exhibit other developability liabilities, and did not bind to any of the 5,300 human membrane-associated proteins tested. These results suggest that IgG1 ab1 has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 d of availability of antigen for panning) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/therapy , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19 Serological Testing/standards , COVID-19 Vaccines/standards , Chlorocebus aethiops , Cricetinae , Female , Humans , Immunization, Passive/methods , Immunization, Passive/standards , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
8.
bioRxiv ; 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32511413

ABSTRACT

Effective therapies are urgently needed for the SARS-CoV-2/COVID19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from eight large phage-displayed Fab, scFv and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. One high affinity mAb, IgG1 ab1, specifically neutralized replication competent SARS-CoV-2 with exceptional potency as measured by two different assays. There was no enhancement of pseudovirus infection in cells expressing Fcγ receptors at any concentration. It competed with human angiotensin-converting enzyme 2 (hACE2) for binding to RBD suggesting a competitive mechanism of virus neutralization. IgG1 ab1 potently neutralized mouse ACE2 adapted SARS-CoV-2 in wild type BALB/c mice and native virus in hACE2 expressing transgenic mice. The ab1 sequence has relatively low number of somatic mutations indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 does not have developability liabilities, and thus has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 days) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.

9.
Cancer Cell ; 32(3): 295-309.e12, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28898695

ABSTRACT

We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target.


Subject(s)
Glypicans/metabolism , Immunotherapy , Molecular Targeted Therapy , Neuroblastoma/immunology , Neuroblastoma/therapy , Oncogene Proteins/metabolism , Animals , Antibodies, Neoplasm/metabolism , Cell Death , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Child , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Mice, Inbred NOD , Mice, SCID , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors
10.
Appl Environ Microbiol ; 78(24): 8601-10, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23042165

ABSTRACT

Sporulation is a critical developmental process in Bacillus spp. that, once initiated, removes the possibility of further growth until germination. Therefore, the threshold conditions triggering sporulation are likely to be subject to evolutionary constraint. Our previous studies revealed two spontaneous hypersporulating mutants of Bacillus atrophaeus subsp. globigii, both containing point mutations in the spo0F gene. One of these strains (Detrick-2; contains the spo0F101 allele with a C:T [His101Arg] substitution) had been deliberately selected in the early 1940s as an anthrax surrogate. To determine whether the experimental conditions used during the selection of the "military" strains could have supported the emergence of hypersporulating variants, the relative fitness of strain Detrick-2 was measured in several experimental settings modeled on experimental conditions employed during its development in the 1940s as a simulant. The congenic strain Detrick-1 contained a wild-type spo0F gene and sporulated like the wild-type strain. The relative fitness of Detrick-1 and Detrick-2 was evaluated in competition experiments using quantitative single nucleotide polymorphism (SNP)-specific real-time PCR assays directed at the C:T substitution. The ancestral strain Detrick-1 had a fitness advantage under all conditions tested except when competing cultures were subjected to frequent heat shocks. The hypersporulating strain gained the maximum fitness advantage when cultures were grown at low oxygen tension and when heat shock was applied soon after the formation of the first heat-resistant spores. This is interpreted as gain of fitness by the hypersporulating strain in fast-changing fluctuating environments as a result of the increased rate of switching to the sporulating phenotype.


Subject(s)
Bacillus/growth & development , Bacillus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Point Mutation , Spores, Bacterial/growth & development , Spores, Bacterial/physiology , Bacillus/genetics , Spores, Bacterial/genetics
11.
Biophys J ; 87(1): 688-95, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15240502

ABSTRACT

The formation of pseudopods and lamellae after ligation of chemoattractant sensitive G-protein coupled receptors (GPCRs) is essential for chemotaxis. Here, pseudopod extension was stimulated with chemoattractant delivered from a micropipet. The chemoattractant diffusion and convection mass transport were considered, and it is shown that when the delivery of chemoattractant was limited by diffusion there was a strong chemoattractant gradient along the cell surface. The diffusion-limited delivery of chemoattractant from a micropipet allowed for maintaining an almost constant chemoattractant concentration at the leading edge of single pseudopods during their growth. In these conditions, the rate of pseudopod extension was dependent on the concentration of chemoattractant in the pipet delivering chemoattractant. The pseudopod extension induced using micropipets was oscillatory even in the presence of a constant delivery of chemoattractant. This oscillatory pseudopod extension was controlled by activated RhoA and its downstream effector kinase ROCK and was abolished after the inhibition of RhoA activation with Clostridium botulinium C3 exoenzyme (C3) or the blocking of ROCK activation with Y-27632. The ability of the micropipet assay to establish a well-defined chemoattractant distribution around the activated cell over a wide range of molecular weights of the used chemoattractants allowed for comparison of the effect of chemoattractant stimulation on the dynamics of pseudopod growth. Pseudopod growth was stimulated using N-formylated peptide (N-formyl-methionyl-leucyl-phenylalanine (fMLP)), platelet activating factor (PAF), leukotriene B4 (LTB(4)), C5a anaphylotoxin (C5a), and interleukin-8 (IL-8), which represent the typical ligands for G-protein coupled chemotactic receptors. The dependence of the rate of pseudopod extension on the concentration of these chemoattractants and their equimolar mixture was measured and shown to be similar for all chemoattractants. The inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%-80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors.


Subject(s)
Actins/metabolism , Chemotaxis/physiology , Neutrophils/metabolism , Pseudopodia/metabolism , rhoA GTP-Binding Protein/metabolism , ADP Ribose Transferases/pharmacology , Actins/drug effects , Amides/pharmacology , Anaphylatoxins/pharmacology , Androstadienes/pharmacology , Botulinum Toxins/pharmacology , Chemotactic Factors/chemistry , Chemotaxis/drug effects , Humans , Interleukin-8/pharmacology , Intracellular Signaling Peptides and Proteins , Leukotriene B4/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Platelet Activating Factor/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/drug effects , Pyridines/pharmacology , Wortmannin , rho-Associated Kinases , rhoA GTP-Binding Protein/antagonists & inhibitors
12.
J Biol Chem ; 279(23): 24460-6, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15051729

ABSTRACT

Chemoattractant-stimulated pseudopod growth in human neutrophils was used as a model system to study the rate-limiting mechanism of cytoskeleton rearrangement induced by activated G-protein-coupled receptors. Cells were activated with N-formyl-Met-Leu-Phe, and the temperature dependence of the rate of pseudopod extension was measured in the presence of pharmacological inhibitors with known mechanisms of action. Three groups of inhibitors were used: (i) inhibitors sequestering substrates involved in F-actin polymerization (latrunculin A for G-actin and cytochalasin D for actin filament-free barbed ends) or sequestering secondary messengers (PIP-binding peptide for phosphoinositide lipids); (ii) competitively binding inhibitors (Akt-inhibitor for Akt/protein kinase B); and (iii) inhibitors that reduce enzyme activity (wortmannin for phosphoinositide 3-kinase and chelerythrine for protein kinase C). The experimental data are consistent with a model in which the relative involvement of a given pathway of F-actin polymerization to the measured rate of pseudopod extension is limited by a slowest (bottleneck) reaction in the cascade of reactions involved in the overall signaling pathway. The approach we developed was used to demonstrate that chemoattractant-induced pseudopod growth and mechanically stimulated cytoskeleton rearrangement are controlled by distinct pathways of F-actin polymerization.


Subject(s)
Enzymes/chemistry , Neutrophils/metabolism , Actins/chemistry , Actins/metabolism , Alkaloids , Androstadienes/pharmacology , Benzophenanthridines , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cytochalasin D/chemistry , Cytoskeleton/metabolism , Enzyme Inhibitors/pharmacology , Enzymes/physiology , Humans , Kinetics , Lipids/chemistry , Models, Chemical , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Peptides/chemistry , Phenanthridines/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Protein Kinase C/chemistry , Receptors, G-Protein-Coupled/metabolism , Temperature , Thiazoles/chemistry , Thiazolidines , Time Factors , Wortmannin
13.
Blood ; 102(6): 2251-8, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12763941

ABSTRACT

Recently we demonstrated the existence of a phosphatidylinositol 3-kinase (PI3K)-independent F-actin polymerization during neutrophil pseudopod extension. Here we examine the use of the PI3K-dependent and PI3K-independent pathways of activation by the N-formyl peptide receptor and the chemokine receptors, and the priming of the 2 pathways by granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin. The inhibition of PI3K activity with wortmannin showed that rate of pseudopod extension stimulated with N-formyl-Met-Leu-Phe (fMLP was mostly dependent on PI3K, while the rate of interleukin-8 (IL-8)-stimulated pseudopod extension was less dependent on PI3K. The incubation of cells with either GM-CSF or insulin increased the rate of pseudopod extension by 50% when the cells were stimulated with IL-8 but not with fMLP. The stimulation with IL-8 phosphorylated the PI3K regulatory subunit. This phosphorylation was enhanced by GM-CSF, which increased PI3K activity and total phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) production. The effect of GM-CSF was blocked with wortmannin. In contrast, insulin did not increase p85 phosphorylation and did not enhance PI3K activity or PtdIns(3,4,5)P3 production. The effect of insulin was insensitive to wortmannin; however, it was blocked by an Src homology 2 (SH2)-binding peptide. These data indicate that priming of IL-8 activation with GM-CSF was mediated via the PI3Ks of class IA, while priming with insulin used a PI3K-independent pathway.


Subject(s)
Actins/metabolism , Neutrophils/metabolism , Adult , Androstadienes/pharmacology , Carrier Proteins/metabolism , Chemotactic Factors/pharmacology , Chemotaxis/drug effects , Chemotaxis/immunology , Enzyme Inhibitors/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Neutrophils/drug effects , Neutrophils/ultrastructure , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Polymers/metabolism , Pseudopodia/drug effects , Pseudopodia/metabolism , Wortmannin
14.
Blood ; 101(3): 1181-4, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12393389

ABSTRACT

We characterized the overall rate of F-actin polymerization in the pseudopod region by measuring the rate of extension of single pseudopods stimulated by f-Met-Leu-Phe. The rate of pseudopod extension was measured in the presence of inhibitors for signaling molecules that are known to be involved in motility. Our data show the existence of 2 distinct signaling pathways of actin polymerization in the pseudopod region: a phosphoinositide 3-kinase gamma (PI3Kgamma)-dependent and -independent pathway. The PI3Kgamma dependent signaling of F-actin polymerization also depends on protein kinase C zeta and protein kinase B (Akt/PKB). The PI3Kgamma-independent pathway depends on GTPase RhoA, the RhoA ROCK kinase, Src family tyrosine kinases, and NADPH, and is modulated by cAMP.


Subject(s)
Actins/metabolism , Neutrophils/metabolism , Receptors, Immunologic/physiology , Receptors, Peptide/physiology , Class Ib Phosphatidylinositol 3-Kinase , Cyclic AMP/physiology , Humans , Intracellular Signaling Peptides and Proteins , Isoenzymes/metabolism , Kinetics , Microscopy, Video , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/drug effects , Pseudopodia/metabolism , Pseudopodia/ultrastructure , Receptors, Formyl Peptide , Signal Transduction/physiology , rho-Associated Kinases , rhoA GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
15.
Ann Biomed Eng ; 30(3): 356-70, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12051620

ABSTRACT

The neutrophil has developed into one of the most efficient vertebrate motile cells. It migrates through tissues, where it encounters multiple chemoattractant signals with complex spatial and temporal characteristics. The directional movement of the neutrophil is signaled by the binding of chemoattractants and chemokines to G-protein-coupled receptors expressed on the plasma membrane. The signals from the ligand-bound receptors are transmitted along signaling pathways and initiate various cell responses, such as motility, superoxide production, and secretion. The signaling of the motility responses finds its climax in the polymerization of F-actin, which results in lamella formation and overall rearrangement of the cellular cytoskeleton and cell crawling. Also, during motility, adhesion receptors attach to and detach from their ligands and provide the necessary traction for crawling. These events are highly synchronized and allow the cell to orient in shallow chemoattractant gradients even when more than one chemoattractants are present. Due to the complexity of the motility responses, the signaling of their regulation is still not well understood. Recent advances in the understanding of the mechanism of F-actin polymerization have shown that the small GTPasess Cdc42, Rac2, and RhoA, play a critical role in motility. The bound integrin receptors may also contribute to the signaling of motility via tyrosine kinase phosphorylation of guanine nucleotide exchange factors and other regulatory proteins. In this review, we discuss the signaling of neutrophil motility in relation to the response of the cell to chemoattractant activation.


Subject(s)
Chemotaxis/physiology , Mechanotransduction, Cellular/physiology , Models, Biological , Neutrophils/physiology , Actins/metabolism , Cell Adhesion , Cell Movement/physiology , GTP Phosphohydrolases/metabolism , Humans , Membrane Glycoproteins , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Platelet Glycoprotein GPIb-IX Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...