Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Article in English | MEDLINE | ID: mdl-38708177

ABSTRACT

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Telomerase , Telomere , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Telomere/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Telomerase/antagonists & inhibitors , Animals , Drug Delivery Systems/methods , Nanoparticles/chemistry , Immunotherapy/methods , Neoplastic Stem Cells/drug effects
2.
NPJ Precis Oncol ; 8(1): 94, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654141

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.

3.
J Med Chem ; 66(21): 14700-14715, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37883180

ABSTRACT

Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.


Subject(s)
Immunoconjugates , Pancreatic Neoplasms , Humans , Animals , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Line, Tumor , Mice, Nude , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
Int J Biol Macromol ; 253(Pt 6): 127105, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37769779

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) has emerged as a potential target for effective cancer therapy. In this study, we report a novel anti-Trop2 antibody IMB1636, developed using hybridoma technology. It exhibited high affinity and specificity (KD = 0.483 nM) in binding both antigens and cancer cells, as well as human tumor tissues. hIMB1636 could induce endocytosis, and enabled targeted delivery to the tumor site with an in vivo retention time of 264 h. The humanized antibody hIMB1636, acquired using CDR grafting, exhibited the potential to directly inhibit cancer cell proliferation and migration, and to induce ADCC effects. Moreover, hIMB1636 significantly inhibited the growth of MDA-MB-468 xenograft tumors in vivo. Mechanistically, hIMB1636 induced cell cycle arrest and apoptosis by regulating cyclin-related proteins and the caspase cascade. In comparison to commercialized sacituzumab, hIMB1636 recognized a conformational epitope instead of a linear one, bound to antigen and cancer cells with similar binding affinity, induced significantly more potent ADCC effects against cancer cells, and displayed superior antitumor activities both in vitro and in vivo. The data presented in this study highlights the potential of hIMB1636 as a carrier for the formulation of antibody-based conjugates, or as a promising candidate for anticancer therapy.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Cell Adhesion Molecules , Antibodies, Monoclonal , Neoplasms/drug therapy , Immunoconjugates/pharmacology , Cell Proliferation , Cell Line, Tumor , Xenograft Model Antitumor Assays
5.
Int J Biol Macromol ; 226: 1088-1099, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36435475

ABSTRACT

OBJECTIVE: To prepare a recombinant EGFR-targeted fusion protein drug conjugate acting on telomere and telomerase; and evaluate its antitumor efficacy. METHODS: We prepared a recombinant fusion protein Fv-LDP-D3 which consists of the Fv fragment of an anti-EGFR monoclonal antibody (MAb), the apoprotein of lidamycin (LDP), and the third domain (D3) of human serum albumin (HSA); then generated the conjugate Fv-LDP-D3∼AE by integrating the active enediyne chomophore (AE) of lidamycin. Accordingly, in vitro and in vivo experiments were performed. RESULTS: As shown, Fv-LDP-D3 specifically bound to EGFR highly-expressing cancer cells and intensely entered K-Ras mutant cells via enhanced macropinocytosis. By in vivo imaging, Fv-LDP-D3 displayed intense accumulation and persistent retention in tumor-site. Furthermore, the conjugate Fv-LDP-D3∼AE displayed highly potent cytotoxicity to cancer cells with IC50 at 0.1 nM level. The conjugate induced telomere shortening and downregulation of telomerase and EGFR pathway related proteins. Fv-LDP-D3∼AE exhibited prominent antitumor efficacy against human colorectal cancer xenograft accompanying with significant increase of serum IFN-ß in athymic mice. CONCLUSION: The recombinant fusion protein conjugate that exhibits the capability of tumor-targeting drug delivery can induce telomere shortening and telomerase downregulation. The investigation may lay the foundation for the development of MAb-HSA domain-based fusion protein drug conjugates.


Subject(s)
Immunoconjugates , Telomerase , Animals , Mice , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Telomerase/genetics , Telomerase/metabolism , ErbB Receptors/metabolism , Down-Regulation , Telomere Shortening , Cell Line, Tumor , Xenograft Model Antitumor Assays , Immunoconjugates/pharmacology , Telomere/metabolism
6.
J Pharm Anal ; 12(2): 232-242, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582405

ABSTRACT

Folate receptor (FR) overexpression occurs in a variety of cancers, including pancreatic cancer. In addition, enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer. Furthermore, the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer. In this study, a novel FR-directed, macropinocytosis-enhanced, and highly cytotoxic bioconjugate folate (F)-human serum albumin (HSA)-apoprotein of lidamycin (LDP)-active enediyne (AE) derived from lidamycin was designed and prepared. F-HSA-LDP-AE consisted of four moieties: F, HSA, LDP, and AE. F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells. Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells. By in vivo optical imaging, F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice, showing clear and lasting tumor localization for 360 h. In the MTT assay, F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines. It also induced apoptosis and caused G2/M cell cycle arrest. F-HSA-LDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice. At well-tolerated doses of 0.5 and 1 mg/kg, (i.v., twice), the inhibition rates were 91.2% and 94.8%, respectively (P<0.01). The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.

7.
Biochem Pharmacol ; 201: 115057, 2022 07.
Article in English | MEDLINE | ID: mdl-35489393

ABSTRACT

KRAS mutation and NF-κB both play crucial role in pancreatic cancer; in addition, defensin, the peptide mediator in innate immunity, can inhibit NF-κB. Assuming a strategy that targets both NF-κB and concomitantly the mutated KRAS indirectly via intensive macropinocytosis, we designed and generated a recombinant protein DF2-HSA which consists of two molecules of human beta-defensin 2 (HBD2) and a moiety of human serum albumin (HSA). As shown, the recombinant protein DF2-HSA markedly down-regulated NF-κB in both KRAS mutant MIA PaCa-2 cells and wild type BxPC-3 cells. Determined by confocal microscopy, the uptake of DF2-HSA in MIA PaCa-2 cells was more intense than that in BxPC-3 cells. The uptake was blocked by the specific inhibitor EIPA, indicating that DF2-HSA internalized via macropinocytosis. DF2-HSA displayed more potent cytotoxicity to cancer cells than HBD2. DF2-HSA induced apoptosis in cancer cells. Notably, DF2-HSA inhibited tumor cell spheroid formation, an effect comparable to that of salinomycin. DF2-HSA inhibited tumor cell migration and invasion. As detected with scanning electron microscopy, DF2-HSA strongly depleted filopodia on cell surface; and salinomycin induced similar changes. By in vivo imaging, DF2-HSA displayed intense tumor-site accumulation and lasting retention for over 14 days; however, HBD2 showed much less tumor-site accumulation and a shorter retention time for only 24 h. DF2-HSA suppressed the growth of pancreatic cancer MIA PaCa-2 xenograft in athymic mice; and its combination with gemcitabine achieved higher antitumor efficacy. In summary, the recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis is highly effective against pancreatic cancer.


Subject(s)
NF-kappa B , Pancreatic Neoplasms , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Mice , NF-kappa B/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Serum Albumin, Human/metabolism , Serum Albumin, Human/pharmacology , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
8.
Eur J Pharmacol ; 919: 174802, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35143830

ABSTRACT

IMB5046 is a nitrobenzoate microtubule inhibitor we reported previously. During screening of its structural analogues, we identified a novel compound IMB5476 with increased aqueous solubility. Here, its antitumor activity and the underlying mechanism were investigated. IMB5476 disrupted microtubule networks in cells and arrested cell cycle at G2/M phase. It inhibited purified tubulin polymerization in vitro. Competition assay indicated that it bound to tubulin at the colchicine pocket. Further experiments proved that it induced cell death by mitotic catastrophe and apoptosis. Notably, it was a poor substrate of P-glycoprotein and exhibited potent cytotoxicity against drug-resistant tumor cells. In addition, IMB5476 could inhibit angiogenesis in vitro. IMB5476 also inhibited the growth of drug-resistant KBV200 xenografts in mice. Conclusively, our data reveal a novel nitrobenzoate microtubule inhibitor with improved aqueous solubility and can overcome multidrug resistance.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Tubulin Modulators/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Microtubules/metabolism , Tubulin Modulators/therapeutic use , Xenograft Model Antitumor Assays
9.
Mil Med Res ; 8(1): 63, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34879870

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype and occurs in approximately 15-20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, especially in TNBC. LR004-VC-MMAE is a new EGFR-targeting antibody-drug conjugate produced by our laboratory. This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action. METHODS: LR004-VC-MMAE was prepared by coupling a cytotoxic payload (MMAE) to an anti-EGFR antibody (LR004) via a linker, and the drug-to-antibody ratio (DAR) was analyzed by HIC-HPLC. The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset (GSE41313) and Western blotting. MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE (0, 0.0066, 0.066, 0.66, 6.6 nmol/L), and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation. The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VC-MMAE concentrations (2.5 and 5 nmol/L) with wound healing and Transwell invasion assays. Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells in MDA-MB-468 and MDA-MB-231 cells. The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo. Briefly, BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDA-MB-231 cells. Then they were randomly divided into 4 groups (n = 6 per group) and treated with PBS, naked LR004 (10 mg/kg), LR004-VC-MMAE (10 mg/kg), or doxorubicin, respectively. Tumor sizes and the body weights of mice were measured every 4 days. The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR, ERK, MEK phosphorylation and tumor stemness marker gene expression. RESULTS: LR004-VC-MMAE with a DAR of 4.02 were obtained. The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells (P < 0.01). LR004-VC-MMAE inhibited the proliferation of EGFR-positive TNBC cells, and the IC50 values of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were (0.13 ± 0.02) nmol/L and (0.66 ± 0.06) nmol/L, respectively, which were significantly lower than that of cells treated with MMAE [(3.20 ± 0.60) nmol/L, P < 0.01, and (6.60 ± 0.50) nmol/L, P < 0.001]. LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells. Moreover, LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability. In TNBC xenograft models, LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36. Surprisingly, tumor recurrence was not observed until the end of the experiment on day 52. In a mechanistic study, we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G2/M phase in MDA-MB-468 [(34 ± 5)% vs. (12 ± 2)%, P < 0.001] and MDA-MB-231 [(27 ± 4)% vs. (18 ± 3)%, P < 0.01] cells. LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4, Sox2, KLF4 and EpCAM. CONCLUSIONS: LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes. It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.


Subject(s)
Immunoconjugates , Triple Negative Breast Neoplasms , Animals , Humans , Mice , ErbB Receptors/metabolism , ErbB Receptors/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice, Nude , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
10.
Int J Biol Macromol ; 187: 24-34, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34284054

ABSTRACT

Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Nanoparticles , Neoplasms/drug therapy , Prodrugs , Recombinant Fusion Proteins , Serum Albumin, Human , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Prodrugs/chemistry , Prodrugs/therapeutic use , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/therapeutic use , Serum Albumin, Human/chemistry , Serum Albumin, Human/genetics , Serum Albumin, Human/therapeutic use
11.
Cancer Chemother Pharmacol ; 87(3): 425-436, 2021 03.
Article in English | MEDLINE | ID: mdl-33388950

ABSTRACT

PURPOSE: To investigate the antitumor efficacy of pingyangmycin (PYM) in combination with anti-PD-1 antibody and determine the capability of PYM to induce immunogenic cell death (ICD) in cancer cells. METHODS: The murine 4T1 breast cancer and B16 melanoma models were used for evaluation of therapeutic efficacy of the combination of PYM with anti-PD-1 antibody. The ELISA kits were used to quantify the ICD related ATP and HMGB1 levels. The Transwell assay was conducted to determine the chemotaxis ability of THP-1 cell in vitro. The flow cytometry was used to measure reactive oxygen species level and analyze the ratio of immune cell subsets. RESULTS: PYM induced ICD in murine 4T1 breast cancer and B16 melanoma cells and increased the release of nucleic acid fragments that may further promote the monocytic chemotaxis. In the 4T1 murine breast cancer model, PYM alone, anti-PD-1 antibody alone, and their combination suppressed tumor growth by 66.3%, 16.1% and 77.6%, respectively. PYM markedly enhanced the therapeutic efficacy of anti-PD-1 antibody against 4T1 breast cancer. The calculated CDI (coefficient of drug interaction) indicated synergistic effect. Evaluated by graphic analysis, the nucleated cells intensity in the femur bone marrow remained unchanged. Histopathological observations revealed no noticeable toxico-pathological changes in the lung and various organs, indicating that the PYM and anti-PD-1 antibody combination exerted enhanced efficacy at well-tolerated dosage level. By the combination treatment, a panel of immunological changes emerged. The ratio of CD3+ cells, NK cells and NKT cells increased and Tregs decreased in peripheral blood. The DCs increased in the spleen. Prominent changes occurred in tumor infiltrating lymphocytes. The ratio of CD8+ cells increased, while that of CD4+ cells decreased; however, the ratio of CD3+ cells remained unchanged, implying that certain immunological responses emerged in the tumor microenvironment. PYM alone could also increase CD8+ cells and reduce CD4+ cells in tumor infiltrating lymphocytes. CONCLUSIONS: The studies indicate that PYM, as an ICD inducer with mild myelosuppression effect, may enhance the therapeutic efficacy of anti-PD-1 antibody in association with tumor infiltrating CD8+ T cell augmentation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Mammary Neoplasms, Animal/drug therapy , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies/administration & dosage , Antibodies/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bleomycin/administration & dosage , Bleomycin/analogs & derivatives , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Female , Lymphocytes, Tumor-Infiltrating/metabolism , Mammary Neoplasms, Animal/pathology , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment/immunology
12.
Cancer Biol Ther ; 21(8): 749-757, 2020 08 02.
Article in English | MEDLINE | ID: mdl-32644888

ABSTRACT

Previous studies have shown that DBDx, a combination consisting of dipyridamole, bestatin and dexamethasone is highly effective against several cancer xenografts in athymic mice. Here the therapeutic effects of DBDx and its combination with gemcitabine or capcitabine against human pancreatic cancer xenografts and the mechanism were studied. In vivo experiments performed in athymic mice showed that the antitumor efficacy of DBDx was much stronger than that of gemcitabine or capecitabine alone. Notably, the combination of DBDx and gemcitabine or capcitabine further enhanced the efficacy. In the case of DBDx (242 mg/kg) plus gemcitabine (100 mg/kg), tumor weight decreased about 97.7%, and tumor sizes were shrinking during the treatment. In the case of DBDx (242 mg/kg) plus capecitabine (718.7 mg/kg), tumor weight decreased about 94.9%. Moreover, DBDx and its combinations obviously prolonged theoverall survival of mice compared with gemcitabine or capcitabine alone. DBDx-based drug combination therapy showed no obvious systematic toxicity. The gene expression profile analysis showed that the genes changed by DBDx were related to immune system and tumor vasculature. The result of protein array showed that the changed proteins in the serum of treated mice were related to immune and inflammation system. These results show that DBDx-based drug combinations, a new strategy which integrates the use of low-cytotoxic drugs and cytotoxic chemotherapeutics, are highly effective regimens against human pancreatic cancer in athymic mice at well tolerated doses. DBDx-based drug combination therapy might provide new options for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Pancreatic Neoplasms/drug therapy , Aged , Animals , Antineoplastic Agents/pharmacology , Disease Models, Animal , Drug Combinations , Humans , Mice , Mice, Nude , Middle Aged , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
J Cell Mol Med ; 24(13): 7228-7238, 2020 07.
Article in English | MEDLINE | ID: mdl-32452639

ABSTRACT

Microtubule-depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule-depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046-induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock-down expression of FAK inhibited IMB5046-induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF-H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046-induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule-depolymerizing agents to be used as vascular disrupting agents.


Subject(s)
Benzoates/pharmacology , Cell Surface Extensions/metabolism , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Microtubules/metabolism , Morpholines/pharmacology , Cardiac Myosins/metabolism , Cell Surface Extensions/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Endothelial Cells/drug effects , Enzyme Activation/drug effects , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Heat-Shock Proteins/metabolism , Humans , Integrins/metabolism , Models, Biological , Molecular Chaperones/metabolism , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/drug effects , Stress Fibers/drug effects , Stress Fibers/metabolism , Sulfones/pharmacology , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism
14.
Cancer Biol Ther ; 21(4): 332-343, 2020 04 02.
Article in English | MEDLINE | ID: mdl-31906826

ABSTRACT

Gemcitabine (Gem) is currently used as the first-line therapy for liver and pancreatic cancer but has limited efficacy in most cases. Dexamethasone (Dex) have been applied as a chemoprotectant and chemosensitizer in cancer chemotherapy. This study further explored the potential of combination of Gem and Dex and tested the hypothesis that glucocorticoid receptor signaling is essential for the synergistic antitumor activity. In the HepG2 and AsPC-1 xenograft models, the combination treatment showed a significantly synergistic antitumor activity. Immunohistochemistry of post-treatment tumors showed a significant decrease in proliferation and angiogenesis as compared to either of the treatments alone. Dex alone and the combination with Gem inhibited the expression of glucocorticoid receptor. The combination of Dex and Gem showed synergistic cytotoxicity in cell lines in vitro. The antiproliferative synergism is prevented by used glucocorticoid receptor (GR) small interfering RNA, demonstrating that the glucocorticoid receptor is required for the antiproliferative synergism of Gem and Dex. The inhibition of glucocorticoid receptor signaling pathway and induction of apoptosis via activation of caspases 3, 8 and 9, PARP, contributed to the synergistic effect of this combination therapy. These results demonstrate that Dex could potentiate the antitumor efficacy of Gem. The synergistic antitumor activity of the combination of Dex and Gem was through glucocorticoid receptor signaling. Taken together, a combination of Dex and Gem shows a significant synergistic antitumor activity and lesser toxicity both in vitro and in vivo and could be a combination chemotherapy for the treatment of highly expression of glucocorticoid receptor patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Receptors, Glucocorticoid/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Dexamethasone/administration & dosage , Female , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
15.
Cancer Cell Int ; 19: 145, 2019.
Article in English | MEDLINE | ID: mdl-31139022

ABSTRACT

BACKGROUND: Pancreatic cancer stem cells (CSCs), a special population of cells, renew themselves infinitely and resist to various treatment. Gramicidin A (GrA), an ionophore antibiotic derived from microorganism, can form channels across the cell membrane and disrupt cellular ionic homeostasis, leading to cell dysfunction and death. As reported, the ionophore antibiotic salinomycin (Sal) has been proved to kill CSCs effectively. Whether GrA owns the potential as a therapeutic drug for CSCs still remains unknown. This study investigated the effect of GrA on pancreatic CSCs and the mechanism. METHODS: Tumorsphere formation assay was performed to assess pancreatic CSCs self-renewal potential. In vitro hemolysis assay was determined to test the borderline concentration of GrA. CCK-8 assay was used to detect pancreatic cancer cell proliferation capability. Flow cytometry was performed to detect cell apoptosis and mitochondrial membrane potential. Scanning and transmission electron microscopy was used to observe ultrastructural morphological changes on cell membrane surface and mitochondria, respectively. Western blot analysis was used to determine relative protein expression levels. Immunofluorescence staining was performed to observe CD47 re-distribution. RESULTS: GrA at 0.05 µM caused tumorspheres disintegration and decrease in number of pancreatic cancer BxPC-3 and MIA PaCa-2 cells. GrA and Sal both inhibited cancer cell proliferation. The IC50 values of GrA and Sal for BxPC-3 cells were 0.025 µM and 0.363 µM; while for MIA PaCa-2 cells were 0.032 µM and 0.163 µM, respectively. Compared on equal concentrations, the efficacy of GrA was stronger than that of Sal. GrA at 0.1 µM or lower did not cause hemolysis. GrA induced ultrastructural changes, such as the decrease of microvilli-like protrusions on cell surface membrane and the swelling of mitochondria. GrA down-regulated the expression levels of CD133, CD44, and CD47; in addition, CD47 re-distribution was observed on cell surface. Moreover, GrA showed synergism with gemcitabine in suppressing cancer cell proliferation. CONCLUSIONS: The study found that GrA was highly active against pancreatic CSCs. It indicates that GrA exerts inhibitory effects against pancreatic CSCs associated with CD47 down-regulation, implying that GrA might play a positive role in modulating the interaction between macrophages and tumor cells.

16.
Mol Oncol ; 13(2): 246-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30372581

ABSTRACT

Epidermal growth factor receptor (EGFR) is a rational target for cancer therapy, because its overexpression plays an important oncogenic role in a variety of solid tumors; however, EGFR-targeted antibody-drug conjugate (ADC) therapy for esophageal squamous cell carcinoma (ESCC) is exceedingly rare. LR004 is a novel anti-EGFR antibody with the advantages of improved safety and fewer hypersensitivity reactions. It may be of great value as a carrier in ADCs with high binding affinity and internalization ability. Here, we prepared an EGFR-targeting ADC, LR004-VC-MMAE, and evaluated its antitumor activities against ESCC and EGFR-positive cells. LR004 was covalently conjugated with monomethyl auristatin E (MMAE) via a VC linker by antibody interchain disulfide bond reduction. VC-MMAE was conjugated with LR004 with approximately 4.0 MMAE molecules per ADC. LR004-VC-MMAE showed a potent antitumor effect against ESCC and other EGFR-positive cells with IC50 values of nM concentrations in vitro. The in vivo antitumor effects of LR004-VC-MMAE were investigated in ESCC KYSE520 and A431 xenograft nude mice models. Significant activity was seen at 5 mg·kg-1 , and complete tumor regression was observed at 15 mg·kg-1 in the KYSE520 xenograft nude mice after four injections, while the naked antibody LR004 had little effect on inhibiting tumor growth. Similar promising results were obtained in the A431 models. In addition, the tumors also remained responsive to LR004-VC-MMAE for large tumor experiments (tumor volume 400-500 mm3 ). The study results demonstrated that LR004-VC-MMAE could be a potential therapeutic agent for ESCC and other EGFR-expressing malignancies. We also evaluated PK profile of LR004-VC-MMAE ADC in the mice model, which would provide qualitative guiding significance for the further research.


Subject(s)
Antibodies, Monoclonal/therapeutic use , ErbB Receptors/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Immunoconjugates/therapeutic use , Oligopeptides/therapeutic use , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Inhibitory Concentration 50 , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
17.
Bioconjug Chem ; 29(9): 3104-3112, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30105903

ABSTRACT

Depending on increasing extracellular protein utilization and altering metabolic programs, cancer cells could proliferate and survive without restricion by ingesting human serum albumin (HSA) to serve as nutritional amino acids. Here, we hypothesize that the consumption of albumin by cancer cells could be utilized as an efficient approach to targeted drug delivery. Lidamycin (LDM), an antitumor antibiotic with extremely potent cytotoxicity to cultured cancer cells, consists of an apoprotein (LDP) and an active enediyne chromophore (AE). In the present study, a novel albumin-lidamycin conjugate was prepared by DNA recombination and molecular reconstitution. Results show that the IC50 values of albumin-lidamycin conjugate (HSA-LDP-AE) for a variety of tested cancer cells were at subnanomolar levels. At tolerated doses, the albumin-lidamycin conjugate significantly inhibited the growth of lung carcinoma PG-BE1 xenografts by 97.8%. The therapeutic efficacy of the albumin-lidamycin conjugate was much stronger than that of free lidamycin. Meanwhile, the images of albumin-lidamycin conjugate showed obvious and lasting tumor localization and fluorescence enrichment and there was no detectable signal in nontumor locations. Taken together, albumin-lidamycin conjugate, a new format of lidamycin, could be a promising antitumor therapeutic agent and albumin-integration might be a feasible approach to targeted antitumor drug delivery.


Subject(s)
Albumins/chemistry , Aminoglycosides/chemistry , Aminoglycosides/therapeutic use , Antibiotics, Antineoplastic/therapeutic use , Enediynes/chemistry , Enediynes/therapeutic use , Neoplasms/drug therapy , Animals , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Female , Humans , Mice , Optical Imaging , Xenograft Model Antitumor Assays
18.
Acta Pharmacol Sin ; 39(11): 1777-1786, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30013033

ABSTRACT

Defensins play an essential role in innate immunity. In this study, a novel recombinant ß-defensin that targets the epidermal growth factor receptor (EGFR) was designed and prepared. The EGFR-targeting ß-defensin consists of an EGF-derived oligopeptide (Ec), a ß-defensin-1 peptide (hBD1) and a lidamycin-derived apoprotein (LDP), which serves as the "scaffold" for the fusion protein (Ec-LDP-hBD1). Ec-LDP-hBD1 effectively bound to EGFR highly expressed human epidermoid carcinoma A431 cells. The cytotoxicity of Ec-LDP-hBD1 to EGFR highly expressed A431 cells was more potent than that to EGFR low-expressed human lung carcinoma A549 and H460 cells (the IC50 values in A431, A549, and H460 cells were 1.8 ± 0.55, 11.9 ± 0.51, and 5.19 ± 1.21 µmol/L, respectively); in addition, the cytotoxicity of Ec-LDP-hBD1 was much stronger than that of Ec-LDP and hBD1. Moreover, Ec-LDP-hBD1 suppressed cancer cell proliferation and induced mitochondria-mediated apoptosis. Its in vivo anticancer action was evaluated in athymic mice with A431 and H460 xenografts. The mice were administered Ec-LDP-hBD1 (5, 10 mg/kg, i.v.) two times with a weekly interval. Administration of Ec-LDP-hBD1 markedly inhibited the tumor growth without significant body weight changes. The in vivo imaging further revealed that Ec-LDP-hBD1 had a tumor-specific distribution with a clear image of localization. The results demonstrate that the novel recombinant EGFR-targeting ß-defensin Ec-LDP-hBD1 displays both selectivity and enhanced cytotoxicity against relevant cancer cells by inducing mitochondria-mediated apoptosis and exhibits high therapeutic efficacy against the EGFR-expressed carcinoma xenograft. This novel format of ß-defensin, which induces mitochondrial-mediated apoptosis, may play an active role in EGFR-targeting cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinoma, Squamous Cell/drug therapy , Mitochondria/metabolism , Recombinant Fusion Proteins/therapeutic use , beta-Defensins/therapeutic use , Aminoglycosides/metabolism , Aminoglycosides/therapeutic use , Animals , Antineoplastic Agents/metabolism , Apoproteins/metabolism , Apoproteins/therapeutic use , Cell Line, Tumor , Enediynes/metabolism , Enediynes/therapeutic use , ErbB Receptors/metabolism , Female , Humans , Mice, Nude , Mitochondria/pathology , Protein Binding , Recombinant Fusion Proteins/metabolism , Xenograft Model Antitumor Assays , beta-Defensins/metabolism
19.
Drug Deliv ; 25(1): 102-111, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29250984

ABSTRACT

Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Fibrosarcoma/drug therapy , A549 Cells , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Fibrosarcoma/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Tissue Inhibitor of Metalloproteinase-2/metabolism
20.
Int J Nanomedicine ; 12: 5255-5269, 2017.
Article in English | MEDLINE | ID: mdl-28769562

ABSTRACT

Previous studies have shown that mithramycin A (MIT) is a promising candidate for the treatment of pancreatic carcinoma through inhibiting transcription factor Sp1. However, systemic toxicities may limit its clinical application. Here, we report a rationally designed formulation of MIT-loaded nanoparticles (MIT-NPs) with a small size and sustained release for improved passive targeting and enhanced therapeutic efficacy. Nearly spherical MIT-NPs with a mean particle size of 25.0±4.6 nm were prepared by encapsulating MIT into methoxy poly(ethylene glycol)-block-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPs) with drug loading of 2.11%±0.51%. The in vitro release of the MIT-NPs lasted for >48 h with a sustained-release pattern. The cytotoxicity of MIT-NPs to human pancreatic cancer BxPC-3 and MIA Paca-2 cells was comparable to that of free MIT. Determined by flow cytometry and confocal microscopy, the NPs internalized into the cells quickly and efficiently, reaching the peak level at 1-2 h. In vivo fluorescence imaging showed that the prepared NPs were gradually accumulated in BxPC-3 and MIA Paca-2 xenografts and retained for 168 h. The fluorescence intensity in both BxPC-3 and MIA Paca-2 tumors was much stronger than that of various tested organs. Therapeutic efficacy was evaluated with the poorly permeable BxPC-3 pancreatic carcinoma xenograft model. At a well-tolerated dose of 2 mg/kg, MIT-NPs suppressed BxPC-3 tumor growth by 96%. Compared at an equivalent dose, MIT-NPs exerted significantly higher therapeutic effect than free MIT (86% versus 51%, P<0.01). Moreover, the treatment of MIT and MIT-NPs reduced the expression level of oncogene c-Myc regulated by Sp1, and notably, both of them decreased the protein level of CD47. In summary, the novel formulation of MIT-NPs shows highly therapeutic efficacy against pancreatic carcinoma xenograft. In addition, MIT-NPs can downregulate CD47 expression, implying that it might play a positive role in cancer immunotherapy.


Subject(s)
Nanoparticles/administration & dosage , Pancreatic Neoplasms/drug therapy , Plicamycin/administration & dosage , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Liberation , Female , Humans , Mice, Inbred BALB C , Microscopy, Confocal , Nanoparticles/chemistry , Particle Size , Plicamycin/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...