Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953304

ABSTRACT

BACKGROUND: Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS: The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION: This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.

2.
Food Funct ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916282

ABSTRACT

In this study, we investigated the effects of glycoprotein (PG)-mediated regulation of Porphyra haitanensis on liver glucose metabolism in hyperglycemic mouse models, and sought to establish the underlying mechanism, as determined by the changes in liver gene expression and metabolic profiles. The results showed that 30-300 mg kg-1 PG upregulated the expression of the liver genes Ins1, Ins2, Insr, Gys2, Gpi1, Gck, and downregulated the expression of G6pc, G6pc2, and G6pc3, in a concentration-dependent manner. 300 mg kg-1 PG downregulated the concentrations of glucose-related metabolites in the liver, but upregulated lactic acid, 2-aminoacetic acid, and glucose-1-phosphate concentrations. It was assumed that PG regulated liver glucose metabolism by enriching insulin secretion, glycolysis/gluconeogenesis, and the AMPK signaling pathway, and promoting insulin secretion, glycogen synthesis, and glycolysis. Our findings supported the development of P. haitanensis and its glycoproteins as novel natural antidiabetic compounds that regulated blood glucose homeostasis.

3.
Int J Biol Macromol ; 270(Pt 2): 132389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754655

ABSTRACT

Currently, evidence from observational studies suggests dietary fiber intake may be associated with decreased risk of food allergy. As a type of dietary fiber, resistant starch was also widely reported to possess anti-allergic properties. However, there is a relative paucity of studies assessing the influence of resistant starch types on their anti-allergic activity and its possible underlying mechanisms. In the current study, the anti-allergic effects of RS3-type (retrograded starch), RS4-type (chemically modified starch, cross-bonded), and RS5-type (starch-palmitic acid complex) of lotus seed resistant starch were evaluated in the OVA (100 mg/kg)-induced food allergic mice model. The results showed that oral administration of RS3 or RS4 lotus seed resistant starch (0.3 g/100 g b.w.) for 25 days significantly improved adverse symptoms of food allergy such as weight loss, increases in allergy symptom score and diarrhea rate; with significant reduction of serum specific antibody IgE, TNF-α, IL-4 levels and improved Th1/Th2 balance being observed. The mechanism may involve the regulation of lotus seed resistant starch on intestinal flora and the metabolites short-chain fatty acids and bile acids. Taken together, the findings may enhance understanding towards ameliorative effects of resistant starch on food allergy, and offer valuable insights for the exploration of novel anti-allergic bioactive compounds.


Subject(s)
Anti-Allergic Agents , Disease Models, Animal , Lotus , Ovalbumin , Seeds , Animals , Lotus/chemistry , Mice , Seeds/chemistry , Anti-Allergic Agents/pharmacology , Resistant Starch/pharmacology , Food Hypersensitivity/immunology , Food Hypersensitivity/drug therapy , Immunoglobulin E/blood , Starch/chemistry , Starch/pharmacology , Female , Gastrointestinal Microbiome/drug effects
4.
Foods ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38472797

ABSTRACT

To investigate the impact of various cooking methods on the volatile aroma compounds of button mushroom, gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) were utilized for aroma analysis. The results indicated that the E-nose was able to effectively distinguish between the samples prepared using different cooking methods. In the raw, steamed, boiled and baked samples, 37, 23, 33 and 35 volatiles were detected, respectively. The roasting process significantly contributed to the production of flavor compounds, giving button mushroom its distinctive flavor. Sixteen differential aromas were identified based on the p-value and VIP value. Additionally, the cluster analysis of differential aroma substances revealed a stronger odor similarity between the steamed and raw groups, consistent with the results of the OPLS-DA analysis of overall aroma components. Seven key aromas were identified through OAV analysis and omission experiments. In addition, 1-octen-3-one was identified as the main aroma component of cooked button mushroom. The findings of the study can be valuable for enhancing the flavor of cooked button mushroom.

5.
Int J Biol Macromol ; 265(Pt 2): 131116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522704

ABSTRACT

Dictyophora indusiata is medicinal and edible fungi containing various nutrients. The aim of this study was to investigate the efficient extraction and structural evolution of Dictyophora indusiata polysaccharide during the vitro digestion based on steam explosion pretreatment methods. In this study, the extraction rate of Dictyophora indusiata polysaccharide was optimized by steam explosion pretreatment methods, which was 2.46 folds that of the water extraction method. In addition, the digestion and fermentation properties of Dictyophora indusiata polysaccharide before and after steam explosion were evaluated in vitro by the changes of molecular weights, total and reducing sugars levels, surface morphology and functional groups, which showed that the structure of Dictyophora indusiata polysaccharide remained stable after salivary-gastric digestion, and partially entered the large intestine, where it could be utilized by gut microbiota. Dictyophora indusiata polysaccharide promoted the increase of beneficial bacteria Megamonas and increased the content of acetic acid, propionic acid and butyric acid, which was 2.17, 2.81, 2.43 folds that of the CON group after fermentation for 24 h, and 1.87, 2.77, 1.90 folds that of the CON group after fermentation for 48 h, respectively. This study will provide theoretical basis for the high value utilization of Dictyophora indusiata polysaccharide.


Subject(s)
Basidiomycota , Steam , Basidiomycota/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Water
6.
Food Chem X ; 21: 101146, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38304052

ABSTRACT

In this work, whiteness, water-holding capacity, gel strength, textural profile analysis were performed to examine the quality of fish balls with abalone (FBA). In addition, a correlation between quality and sensory properties was established. The addition of abalone significantly increased the water holding capacity, gel strength and textural properties of FBA, and decreased their whiteness, the best overall quality was achieved at 9 % w/w abalone addition. The E-nose and E-tongue results revealed that the addition of abalone changed the flavour of FBA. HS-SPME-GC-MS identified 65 volatile organic compounds (VOCs) and proved to be effective in reducing fishy flavour. E-nose can distinguish between the VOCs in FBA. Moreover, Umami and 1-octen-3-ol can serve as important indicators to observe changes in the quality of FBA, as they were positively connected with WHC, gumminess, chewiness, resilience, a*, hexanal, etc. The results provided a theoretical basis for the development of abalone and surimi products.

7.
Foods ; 13(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254592

ABSTRACT

The search for alternative salt formulations similar to sodium chloride and their effect on marinated meat products is of great significance to the low-sodium meat processing industry. The main purpose of this study was to investigate the effect of partially replacing sodium chloride with potassium lactate, calcium ascorbate, and magnesium chloride on the sodium content, water activity and distribution, protein solubility, microstructure, sensory characteristics and volatile flavor compounds in low-sodium marinated beef. The sodium content in the test group decreased up to 28% compared to 100% in the sodium chloride group C1. The formulation including 60% sodium chloride and a total of 40% compound alternative salts in groups F1 and F2 increased their myofibril fragmentation index and promoted the disruption of the myogenic fiber structure. Group F1 (the ratio of potassium lactate, calcium ascorbate and magnesium chloride was 2:1:1) performed higher solubility of myofibrillar proteins and lower transverse relaxation value than group F2 detected by low-field nuclear magnetic resonance, which indicated that F1 formulation was beneficial to promote the solubility of myofibrillar proteins and attenuate the water mobility of marinated beef. Moreover, group F1 had a more similar microstructure and more similar overall sensory attributes to group C1 according to the scanning electron microscopy. The sensory evaluation showed higher peak intensity and response values of volatile flavor compounds than group C1 and C2 (only 60% sodium chloride) when detected using gas chromatography-ion mobility spectrometry technology, which indicated that the compound alternative salts of group F1 can improve the lower quality of low-sodium marinated beef and perform similar attributes to the C1 sample regarding moisture distribution and microstructure and even performs better than it with regards to flavor. Therefore, the F1 formula possessed greater potential for application in low-sodium marinated meat products.

8.
Food Chem X ; 20: 100955, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144786

ABSTRACT

Exopolysaccharides produced by Weissella cibaria has attracted increasing attention owing to their biological activity. Here, a strain was isolated from the home-made fermented octopus, which was identified as W. cibaria FAFU821. In addition, the polysaccharide were isolated and purified by cellulose DE-52 column and Sephadex G-100 column, and named EPS821-1. In this work, the structure of EPS821-1 and its cryoprotective activity on Bifidobacterium longum subsp. longum F2 were investigated in vitro. These results suggested that the EPS821-1 is a novel glucan, which mainly consists of α-(1 â†’ 6) linkage with α-(1 â†’ 4), α-(1 â†’ 4,6) and α-(1 â†’ 3,6) residue as branches. In addition, EPS821-1 existed the three-dimensional network structure and exhibited the excellent cryoprotective activities for B. longum subsp. longum F2, which was 2.75 folds higher than that of the controls. This study provided scientific evidence and insights for the application of EPS821-1 as cryoprotection in food field.

9.
Food Funct ; 14(22): 10188-10203, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37909356

ABSTRACT

Sea cucumber peptides (SCPs) have been proven to have many active functions; however, their impact on testosterone synthesis and the corresponding mechanism are not yet clear. This study attempts to explore the effects of SCPs on sex hormone regulation in acute exhaustive swimming (AES) male mice and the possible mechanisms. In the present study, SCP intervention significantly prolonged exhaustive swimming time and reduced exercise metabolite accumulation. The reproductive ability-related parameters including penile index, mating ability, testicular morphology, and sperm storage were dramatically improved by SCP intervention. Notably, SCPs markedly reversed the AES-induced decrease in serum testosterone (T), estradiol (E2), and follicle-stimulating hormone (FSH) levels. Moreover, treatment with a high dose of SCP (0.6 mg per g bw) significantly enhanced the expression of testosterone synthesis-related proteins in testis, meanwhile markedly increasing the gene expression of StAR, Hsd17b3, Hsd17b2, Ldlr, and Cyp19a1. Serum metabolomics results indicated that SCP intervention notably upregulated the expression of 1-stearoyl-2-arachidonoyl-sn-glycerol but downregulated the concentrations of succinate and DL-lactate. Furthermore, serum metabolomics combined with testicular transcriptome, western blot, and correlation analyses demonstrated that SCPs may regulate testosterone synthesis via the Ca2+/PKA signaling pathway. This study indicated that the SCP could be a potential dietary supplement to improve the symptoms of decreased sex hormones related to exercise fatigue.


Subject(s)
Follicle Stimulating Hormone , Sea Cucumbers , Mice , Male , Animals , Sea Cucumbers/metabolism , Swimming , Semen/metabolism , Testis/metabolism , Testosterone , Gonadal Steroid Hormones , Signal Transduction
10.
Mol Immunol ; 164: 124-133, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000115

ABSTRACT

Hepcidin has been identified as an important antimicrobial peptide exerting important innate immunomodulatory activities in many fish species. In the present study, reverse transcription PCR coupled with the rapid amplification of cDNA ends was used to obtain the full-length cDNA of the crescent sweetlips hepcidin gene, which is 829 bp in length and includes an 273 bp ORF encoding a peptide with 90 amino acid residues. Sequence alignment showed a typical RXKR motif and eight conserved cysteine residues in the deduced amino acid sequences. Four disulfide bonds were predicted to form between these eight cysteines, which may stabilize the hairpin structure in hepcidin molecule. Furthermore, phylogenetic analysis showed that the deduced amino acid sequences of crescent sweetlips hepcidin had high sequence homology to hepcidins from fish species of Eupercaria. In addition, the crescent sweetlips hepcidin peptide demonstrated a strong antimicrobial activity in vitro against several types of pathogenic bacteria in fish. In conclusion, the obtained results suggested that crescent sweetlips hepcidin possessed the typical structure similar to other fish hepcidins and had strong antibacterial activity, which showed great potential in the prevention of fish diseases in aquaculture.


Subject(s)
Antimicrobial Peptides , Hepcidins , Animals , Hepcidins/genetics , Phylogeny , DNA, Complementary/genetics , Fishes/genetics , Cloning, Molecular
11.
Foods ; 12(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38002176

ABSTRACT

The purpose of this study was to investigate the effect of Tremella fuciformis polysaccharides on the physicochemical properties of freeze-thawed cone chestnut starch. Various aspects, including water content, crystallinity, particle size, gelatinization, retrogradation, thermal properties, rheological properties, and texture, were examined. The results revealed that moderate freezing and thawing processes increased the retrogradation of starch; particle size, viscosity, shear type, hinning degree, and hardness decreased. After adding Tremella fuciformis polysaccharide, the particle size, relative crystallinity, and gelatinization temperature decreased, which showed solid characteristics. Consequently, the inclusion of Tremella fuciformis polysaccharide effectively countered dehydration caused by freezing and thawing, reduced viscosity, and prevented the retrogradation of frozen-thawed chestnut starch. Moreover, Tremella fuciformis polysaccharide played a significant role in enhancing the stability of the frozen-thawed chestnut starch. These findings highlight the potential benefits of incorporating Tremella fuciformis polysaccharides in starch-based products subjected to freeze-thaw cycles.

12.
J Agric Food Chem ; 71(44): 16763-16776, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37877414

ABSTRACT

A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and ß-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.


Subject(s)
Hypoglycemic Agents , Porphyra , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Porphyra/chemistry , alpha-Glucosidases , Molecular Docking Simulation , alpha-Amylases , Glycoproteins/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
13.
Food Res Int ; 173(Pt 2): 113427, 2023 11.
Article in English | MEDLINE | ID: mdl-37803765

ABSTRACT

Purple sweet potato starch (PSPS) was modified using different amounts of sodium trimetaphosphate (0, 3-12%). Phosphorus content, crosslinking (CL), and substitution levels increased after modification. CL led to gradual agglomeration with each other through adhesion, compared to 0% STMP. X-ray diffraction did not change, but crystalline properties, swelling index, and peak viscosity increased, and solubility and glycaemic index decreased after crosslinking. Crosslinking increased, leading to a decrease of greater significance at 3% CL. Resistant starch was increased from 60.51 to 83.32%. G' and G'' values for crosslinking starch samples varied from 3086.00-5507.50 Pa and 513.92-800.30 Pa, respectively, after sweep test. The flow behavior index < 1 indicates that CL starch pastes are shear-thin. Positive and negative correlations were observed between gelatinized starch enthalpy and RS and between SDS and GI, respectively. The results lay the groundwork to comprehend the properties and relationships of CLPSPS and promote its possible use in foods.


Subject(s)
Ipomoea batatas , Starch , Starch/chemistry , Ipomoea batatas/chemistry , X-Ray Diffraction , Solubility
14.
ACS Omega ; 8(37): 33966-33974, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744825

ABSTRACT

In the current study, the DNase-like activity of the Dawson-type polyoxometalate K6[P2Mo18O62] was explored. The obtained findings demonstrated that K6[P2Mo18O62] could effectively cleave phosphoester bonds in the DNA model substrate (4-nitrophenyl phosphate) and result in the degradation of plasmid DNA. Moreover, the application potential of this Dawson-type polyoxometalate as a DNase-mimetic artificial enzyme to degrade extracellular DNA (eDNA) in Escherichia coli (E. coli) bacterial biofilm was explored. The results demonstrated that K6[P2Mo18O62] exhibited high cleavage ability toward eDNA secreted by E. coli and thus eradicated the bacterial biofilm. In conclusion, Dawson-type polyoxometalate K6[P2Mo18O62] possessed desirable DNase-like activity, which could serve as a bacterial biofilm eradication agent by cleaving and degrading eDNA molecules.

15.
Curr Issues Mol Biol ; 45(9): 7212-7227, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37754240

ABSTRACT

The hepcidin peptide of crescent sweetlips (Plectorhinchus cinctus) is a cysteine-rich, cationic antimicrobial peptide that plays a crucial role in the innate immune system's defense against invading microbes. The aim of this study was to identify the optimal parameters for prokaryotic expression and purification of this hepcidin peptide and characterize its antibacterial activity. The recombinant hepcidin peptides were expressed in Escherichia coli strain Arctic Express (DE3), with culture and induction conditions optimized using response surface methodology (RSM). The obtained hepcidin peptides were then purified before tag cleavage, and their antibacterial activity was determined. The obtained results revealed that induction temperature had the most significant impact on the production of soluble recombinant peptides. The optimum induction conditions were determined to be an isopropylthio-ß-galactoside (IPTG) concentration of 0.21 mmol/L, induction temperature of 18.81 °C, and an induction time of 16.01 h. Subsequently, the recombinant hepcidin peptide was successfully purified using Ni-IDA affinity chromatography followed by SUMO protease cleavage. The obtained hepcidin peptide (without His-SUMO tag) demonstrated strong antimicrobial activity in vitro against V. parahaemolyticus, E. coli, and S. aureus. The results showed prokaryotic (E. coli) expression is a feasible way to produce the hepcidin peptide of crescent sweetlips in a cost-effective way, which has great potential to be used as an antimicrobial agent in aquaculture.

16.
Foods ; 12(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569159

ABSTRACT

In order to study the effects and mechanism of Monascus on the quality of hairtail surimi, high-throughput sequencing technology, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS), and electronic nose techniques were used to investigate the changes in the quality, microbial diversity, and volatile flavor compounds of Monascus-fermented hairtail surimi (MFHS) during fermentation. The results showed that the total volatile basic nitrogen (TVB-N) index of hairtail surimi fermented by Monascus for 0-5 h met the requirements of the national standard. Among them, the 1 h group showed the best gel quality, which detected a total of 138 volatile substances, including 20 alcohols, 7 aldehydes, 12 olefins, 4 phenols, 12 alkanes, 8 ketones, 15 esters, 6 acids, 16 benzenes, 4 ethers, and 8 amines, as well as 26 other compounds. In addition, the dominant fungal microorganisms in the fermentation process of MFHS were identified, and a Spearman correlation analysis showed that 16 fungal microorganisms were significantly correlated with the decrease in fishy odor substances in the fermented fish and that 8 fungal microorganisms were significantly correlated with the increase in aromatic substances after fermentation. In short, Monascus fermentation can eliminate and reduce the fishy odor substances in hairtail fish, increase and improve the aromatic flavor, and improve the quality of hairtail surimi gel. These findings are helpful for revealing the mechanism of the quality formation of fermented surimi and provide guidance for the screening of starter culture in the future.

17.
Food Funct ; 14(17): 7977-7991, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37578326

ABSTRACT

The hypoglycemic activity of natural algal glycoproteins has attracted interest, but studies of their mechanism of regulating glucose metabolism are lacking. This study investigated the hypoglycemic activity of Porphyra haitanensis glycoprotein (PG) in a mouse hyperglycemia model. The underlying mechanism was elucidated by monitoring changes in the gut microbiome and untargeted serum metabolomics. The results indicated that 30-300 mg kg-1 PG regulated blood glucose levels by increasing insulin secretion, reducing glycated hemoglobin, and improving streptozotocin-induced hyperglycemia in a concentration-dependent manner. In particular, 300 mg kg-1 PG decreased fasting blood glucose by 63.11% and glycosylated hemoglobin by 24.50% and increased insulin secretion by 163.97%. The mechanism of the improvement of hyperglycemia by PG may involve regulating beneficial intestinal bacteria (e.g., norank_f__Muribaculaceae and Lachnospiraceae) and altering the serum metabolic profile (e.g., upregulation of hypotaurine, 3-hydroxy-2-naphthoic acid, and L-glycine), to regulate taurine and hypotaurine, the TCA cycle, AMPK, and pyruvate metabolism. Our findings supported the development of Porphyra haitanensis and its glycoprotein as novel natural antidiabetic compounds to regulate the glycemic balance.


Subject(s)
Gastrointestinal Microbiome , Hyperglycemia , Porphyra , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Mice, Obese , Blood Glucose/metabolism , Metabolome , Glycoproteins/metabolism , Disease Models, Animal , Hyperglycemia/drug therapy
18.
Int J Biol Macromol ; 248: 125914, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37481178

ABSTRACT

Aging has become a major global public health challenge. Our previous research showed that R-phycocyanin (R-PC) possessed anti-aging activity. Notably, studies already revealed that gender may affect the responses to the anti-aging drug. Therefore, it is worth investigating whether the anti-aging effects and their underlying molecular mechanisms of R-PC differ between genders. Firstly, R-PC was isolated from porphyra haitanensis and its anti-aging mechanisms were explored using the nature aging male and female drosophila melanogaster as model. Next, the regulation pathway of longevity was analyzed by KEGG pathway analysis. The longevity pathways-associated molecules were also examined to explore anti-aging mechanisms of R-PC. The results showed that R-PC increased AMPK activity, thus enhanced the key regulatory factors of autophagy (Atg1, Atg8, Atg5), and consequently induced autophagy. Hence, the longevity activity of R-PC life was related with AMPK/mTOR/S6K autophagic signaling pathways in aging female drosophila melanogaster. Meanwhile, R-PC significantly down-regulated TNF-α, MMP3, IL-1ß, IL-6, IL-8 expression levels, and the anti-inflammatory and longevity was associated with R-PC-induced regulation of pI3k/AKT/FOXO3 signaling pathway in aging male drosophila melanogaster. These finding showed that R-PC from porphyra haitanensis might exert the anti-aging actions via different mechanisms in male and female drosophila melanogaste.


Subject(s)
Longevity , Porphyra , Animals , Female , Male , Drosophila melanogaster , Phycocyanin/pharmacology , AMP-Activated Protein Kinases , Phosphatidylinositol 3-Kinases
19.
Foods ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37444244

ABSTRACT

The effect of chlorogenic acid (CA) on the dielectric response of lotus seed starch (LS) after microwave treatment, the behavior and digestive characteristics of the resulting starch/chlorogenic acid complex (LS-CA) at different degrees of gelatinization and the inhibition of α-amylase by chlorogenic acid were investigated. The variation in dielectric loss factor, ε″, and dielectric loss tangent, tanδε, of the microwave thermal conversion indicated that LS-CA had a more efficient microwave-energy-to-thermal-energy conversion efficiency than LS. This gelatinized LS-CA to a greater extent at any given temperature between 65 and 85 °C than LS, and it accelerated the degradation of the starch crystalline structure. The greater disruption of the crystal structure decreased the bound water content and increased the thermal stability of LS-CA compared to LS. The simulated in vitro digestion found that the presence of the LS-CA complex improved the slow-digestion property of lotus seed starch by increasing its content of resistant and slowly digested starch. In addition, the release of chlorogenic acid during α-amylase hydrolysis further slowed starch digestion by inhibiting α-amylase activity. These findings provide a foundation for understanding the correlation between the complex behavior and digestive properties of naturally polyphenol-rich, starch-based foods, such as LS, under microwave treatment, which will facilitate the development of starch-based foods with tailored digestion rates, lower final degrees of hydrolysis and glycemic indices.

20.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511226

ABSTRACT

Polyoxometalates have emerged as promising bactericidal agents. In the current study, the bactericidal activity of polyoxometalate K6[P2Mo18O62] against Escherichia coli (E. coli) O157:H7 and its possible underlying mechanisms were explored. The obtained results demonstrated that K6[P2Mo18O62] could effectively kill E. coli O157:H7 at millimolar levels. Moreover, K6[P2Mo18O62] treatment also induced significant increases in recA protein expression and further triggered characteristic apoptosis-like bacterial death events such as DNA fragmentation and phosphatidylserine exposure. In conclusion, polyoxometalate K6[P2Mo18O62] possesses a desirable antibacterial activity, and induction of bacterial apoptosis-like death might be involved in its underlying bactericidal mechanisms.


Subject(s)
Escherichia coli O157 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA Fragmentation , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...