Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Inflamm (Lond) ; 16: 12, 2019.
Article in English | MEDLINE | ID: mdl-31160886

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) is an antigen-independent, innate immune response to arterial occlusion and ischemia with subsequent paradoxical exacerbation after reperfusion. IRI remains a critical problem after vessel occlusion and infarction or during harvest and surgery in transplants. After transplant, liver IRI (LIRI) contributes to increased acute and chronic rejection and graft loss. Tissue loss during LIRI has been attributed to local macrophage activation and invasion with excessive inflammation together with hepatocyte apoptosis and necrosis. Inflammatory and apoptotic signaling are key targets for reducing post-ischemic liver injury.Myxomavirus is a rabbit-specific leporipoxvirus that encodes a suite of immune suppressing proteins, often with extensive function in other mammalian species. Serp-2 is a cross-class serine protease inhibitor (serpin) which inhibits the inflammasome effector protease caspase-1 as well as the apoptotic proteases granzyme B and caspases 8 and 10. In prior work, Serp-2 reduced inflammatory cell invasion after angioplasty injury and after aortic transplantation in rodents. In this report, we explore the potential for therapeutic treatment with Serp-2 in a mouse model of LIRI. METHODS: Wildtype (C57BL/6 J) mice were subjected to warm, partial (70%) hepatic ischemia for 90 min followed by treatment with saline or Serp-2 or M-T7, 100 ng/g/day given by intraperitoneal injection on alternate days for 5 days. M-T7 is a Myxomavirus-derived inhibitor of chemokine-GAG interactions and was used in this study for comparative analysis of an unrelated viral protein with an alternative immunomodulating mechanism of action. Survival, serum ALT levels and histopathology were assessed 24 h and 10 days post-LIRI. RESULTS: Serp-2 treatment significantly improved survival to 85.7% percent versus saline-treated wildtype mice (p = 0.0135), while M-T7 treatment did not significantly improve survival (p = 0.2584). Liver viability was preserved by Serp-2 treatment with a significant reduction in serum ALT levels (p = 0.0343) and infarct scar thickness (p = 0.0016), but with no significant improvement with M-T7 treatment. Suzuki scoring by pathologists blinded with respect to treatment group indicated that Serp-2 significantly reduced hepatocyte necrosis (p = 0.0057) and improved overall pathology score (p = 0.0046) compared to saline. Immunohistochemistry revealed that Serp-2 treatment reduced macrophage infiltration into the infarcted liver tissue (p = 0.0197). CONCLUSIONS: Treatment with Serp-2, a virus-derived inflammasome and apoptotic pathway inhibitor, improves survival after liver ischemia-reperfusion injury in mouse models. Treatment with a cross-class immune modulator provides a promising new approach designed to reduce ischemia-reperfusion injury, improving survival and reducing chronic transplant damage.

2.
Viruses ; 10(10)2018 09 23.
Article in English | MEDLINE | ID: mdl-30249047

ABSTRACT

Inflammatory bowel disease (IBD) and Clostridium difficile infection cause gastrointestinal (GI) distension and, in severe cases, toxic megacolon with risk of perforation and death. Herpesviruses have been linked to severe GI dilatation. MHV-68 is a model for human gamma herpesvirus infection inducing GI dilatation in interleukin-10 (IL-10)-deficient mice but is benign in wildtype mice. MHV-68 also causes lethal vasculitis and pulmonary hemorrhage in interferon gamma receptor-deficient (IFNγR-/-) mice, but GI dilatation has not been reported. In prior work the Myxomavirus-derived anti-inflammatory serpin, Serp-1, improved survival, reducing vasculitis and pulmonary hemorrhage in MHV-68-infected IFNγR-/- mice with significantly increased IL-10. IL-10 has been investigated as treatment for GI dilatation with variable efficacy. We report here that MHV-68 infection produces severe GI dilatation with inflammation and gut wall degradation in 28% of INFγR-/- mice. Macrophage invasion and smooth muscle degradation were accompanied by decreased concentrations of T helper (Th2), B, monocyte, and dendritic cells. Plasma and spleen IL-10 were significantly reduced in mice with GI dilatation, while interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNFα) and INFγ increased. Treatment of gamma herpesvirus-infected mice with exogenous IL-10 prevents severe GI inflammation and dilatation, suggesting benefit for herpesvirus-induced dilatation.


Subject(s)
Gastric Dilatation/therapy , Gastric Dilatation/virology , Herpesviridae Infections/complications , Interleukin-10/therapeutic use , Receptors, Interferon/genetics , Rhadinovirus , Animals , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Gastric Dilatation/genetics , Gastric Dilatation/pathology , Interleukin-10/genetics , Mice , Mice, Knockout , Receptors, Interferon/metabolism , Statistics, Nonparametric , Interferon gamma Receptor
3.
Sci Rep ; 8(1): 13433, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194334

ABSTRACT

Early damage to transplanted organs initiates excess inflammation that can cause ongoing injury, a leading cause for late graft loss. The endothelial glycocalyx modulates immune reactions and chemokine-mediated haptotaxis, potentially driving graft loss. In prior work, conditional deficiency of the glycocalyx-modifying enzyme N-deacetylase-N-sulfotransferase-1 (Ndst1f/f TekCre+) reduced aortic allograft inflammation. Here we investigated modification of heparan sulfate (HS) and chemokine interactions in whole-organ renal allografts. Conditional donor allograft Ndst1 deficiency (Ndst1-/-; C57Bl/6 background) was compared to systemic treatment with M-T7, a broad-spectrum chemokine-glycosaminoglycan (GAG) inhibitor. Early rejection was significantly reduced in Ndst1-/- kidneys engrafted into wildtype BALB/c mice (Ndst1+/+) and comparable to M-T7 treatment in C57Bl/6 allografts (P < 0.0081). M-T7 lost activity in Ndst1-/- allografts, while M-T7 point mutants with modified GAG-chemokine binding displayed a range of anti-rejection activity. CD3+ T cells (P < 0.0001), HS (P < 0.005) and CXC chemokine staining (P < 0.012), gene expression in NFκB and JAK/STAT pathways, and HS and CS disaccharide content were significantly altered with reduced rejection. Transplant of donor allografts with conditional Ndst1 deficiency exhibit significantly reduced acute rejection, comparable to systemic chemokine-GAG inhibition. Modified disaccharides in engrafted organs correlate with reduced rejection. Altered disaccharides in engrafted organs provide markers for rejection with potential to guide new therapeutic approaches in allograft rejection.


Subject(s)
Allogeneic Cells/enzymology , Aorta/transplantation , Endothelial Progenitor Cells/enzymology , Graft Rejection/enzymology , Myeloid Progenitor Cells/enzymology , Sulfotransferases , Allogeneic Cells/pathology , Animals , Aorta/pathology , Endothelial Progenitor Cells/pathology , Gene Deletion , Graft Rejection/genetics , Graft Rejection/pathology , Graft Rejection/prevention & control , Mice , Mice, Inbred BALB C , Myeloid Progenitor Cells/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism
4.
Article in English | MEDLINE | ID: mdl-28925907

ABSTRACT

AIMS: Atrial fibrillation (AF) ablation is associated with increased circulating markers of inflammation. Innate immune or inflammation pathways up-regulate mononuclear cell responses and may increase the risk for recurrent arrhythmia. Chemokines and serine protease coagulation pathways both activate innate immune responses. Here, we measured inflammatory markers in peripheral blood samples from patients after cryoballoon and/or radiofrequency pulmonary vein isolation and assessed the capacity for the inhibition of chemokine and serine protease pathways to block cell activation. METHODS: Markers of inflammation were measured in 55 patients immediately before and one day after AF ablation. Peripheral blood mononuclear cells (PBMCs) isolated from 19 patients were further tested for responsiveness to two anti-inflammatory proteins ex vivo using fluorescence assays and RT-qPCR analysis of gene expression. RESULTS: White blood cells (WBC), C-reactive protein, fibrinogen and troponin T levels were significantly elevated after ablation. PBMCs isolated from the circulating blood had increased activation with Phorbol 12-myristate 13-acetate. Cell activation, as measured by membrane fluidity, was blunted after treatment with a broad-spectrum chemokine modulating protein, M-T7, which interferes with chemokine/glycosaminoglycan (GAG) interactions, but not by Serp-1, a serine protease inhibitor (serpin) that targets both thrombotic and thrombolytic pathway proteases. Differential gene expression changes in the apoptotic pathway were identified with M-T7 and Serp-1. CONCLUSIONS: Patients undergoing AF ablation have significantly increased inflammatory markers. Inhibition of chemokine signaling, but not serine proteases, reduced the activation of monocytes isolated from patients, in vitro. Targeting chemokines have the potential to reduce post-ablation activation of circulating leukocytes.


Subject(s)
Atrial Fibrillation/therapy , Catheter Ablation/adverse effects , Inflammation/drug therapy , Inflammation/etiology , Leukocytes , Aged , Atrial Fibrillation/pathology , Biomarkers/blood , C-Reactive Protein/metabolism , Chemokines/antagonists & inhibitors , Chemokines/blood , Chemokines/metabolism , Female , Gene Expression/genetics , Humans , Inflammation/blood , Leukocyte Count , Macrophage Activation/drug effects , Male , Middle Aged , Monocytes/metabolism , Protease Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Signal Transduction/drug effects
5.
J Biol Chem ; 291(6): 2874-87, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26620556

ABSTRACT

Serpins regulate coagulation and inflammation, binding serine proteases in suicide-inhibitory complexes. Target proteases cleave the serpin reactive center loop scissile P1-P1' bond, resulting in serpin-protease suicide-inhibitory complexes. This inhibition requires a near full-length serpin sequence. Myxomavirus Serp-1 inhibits thrombolytic and thrombotic proteases, whereas mammalian neuroserpin (NSP) inhibits only thrombolytic proteases. Both serpins markedly reduce arterial inflammation and plaque in rodent models after single dose infusion. In contrast, Serp-1 but not NSP improves survival in a lethal murine gammaherpesvirus68 (MHV68) infection in interferon γ-receptor-deficient mice (IFNγR(-/-)). Serp-1 has also been successfully tested in a Phase 2a clinical trial. We postulated that proteolytic cleavage of the reactive center loop produces active peptide derivatives with expanded function. Eight peptides encompassing predicted protease cleavage sites for Serp-1 and NSP were synthesized and tested for inhibitory function in vitro and in vivo. In engrafted aorta, selected peptides containing Arg or Arg-Asn, not Arg-Met, with a 0 or +1 charge, significantly reduced plaque. Conversely, S-6 a hydrophobic peptide of NSP, lacking Arg or Arg-Asn with -4 charge, induced early thrombosis and mortality. S-1 and S-6 also significantly reduced CD11b(+) monocyte counts in mouse splenocytes. S-1 peptide had increased efficacy in plasminogen activator inhibitor-1 serpin-deficient transplants. Plaque reduction correlated with mononuclear cell activation. In a separate study, Serp-1 peptide S-7 improved survival in the MHV68 vasculitis model, whereas an inverse S-7 peptide was inactive. Reactive center peptides derived from Serp-1 and NSP with suitable charge and hydrophobicity have the potential to extend immunomodulatory functions of serpins.


Subject(s)
Blood Coagulation/drug effects , Herpesviridae Infections/immunology , Immunologic Factors , Membrane Proteins , Peptides , Rhadinovirus/immunology , Vasculitis/immunology , Animals , Blood Coagulation/immunology , Disease Models, Animal , Herpesviridae Infections/drug therapy , Humans , Immunologic Factors/chemical synthesis , Immunologic Factors/chemistry , Immunologic Factors/immunology , Jurkat Cells , Membrane Proteins/chemical synthesis , Membrane Proteins/chemistry , Membrane Proteins/pharmacology , Mice , Mice, Knockout , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Vasculitis/drug therapy
6.
PLoS One ; 10(11): e0143291, 2015.
Article in English | MEDLINE | ID: mdl-26619277

ABSTRACT

Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1ß, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.


Subject(s)
Aggressive Periodontitis/microbiology , Apolipoproteins E/genetics , Atherosclerosis/etiology , Microbiota , Aggressive Periodontitis/complications , Animals , Chemokines/genetics , Chemokines/metabolism , Fusobacterium nucleatum/isolation & purification , Inflammation/etiology , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Mouth/microbiology , Porphyromonas gingivalis/isolation & purification , T-Lymphocytes/metabolism , Treponema denticola/isolation & purification
7.
Infect Immun ; 83(12): 4582-93, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371120

ABSTRACT

The American Heart Association supports an association between periodontal diseases and atherosclerosis but not a causal association. This study explores the use of the integrin ß6(-/-) mouse model to study the causality. We investigated the ability of a polymicrobial consortium of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to colonize the periodontium and induce local and systemic inflammatory responses. Polymicrobially infected Itgß6(-/-) mice demonstrate greater susceptibility to gingival colonization/infection, with severe gingival inflammation, apical migration of the junctional epithelium, periodontal pocket formation, alveolar bone resorption, osteoclast activation, bacterial invasion of the gingiva, a greater propensity for the bacteria to disseminate hematogenously, and a strong splenic T cell cytokine response. Levels of atherosclerosis risk factors, including serum nitric oxide, oxidized low-density lipoprotein, serum amyloid A, and lipid peroxidation, were significantly altered by polybacterial infection, demonstrating an enhanced potential for atherosclerotic plaque progression. Aortic gene expression revealed significant alterations in specific Toll-like receptor (TLR) and nucleotide-binding domain- and leucine-rich-repeat-containing receptor (NLR) pathway genes in response to periodontal bacterial infection. Histomorphometry of the aorta demonstrated larger atherosclerotic plaques in Itgß6(-/-) mice than in wild-type (WT) mice but no significant difference in atherosclerotic plaque size between mice with polybacterial infection and mice with sham infection. Fluorescence in situ hybridization demonstrated active invasion of the aortic adventitial layer by P. gingivalis. Our observations suggest that polybacterial infection elicits distinct aortic TLR and inflammasome signaling and significantly increases local aortic oxidative stress. These results are the first to demonstrate the mechanism of the host aortic inflammatory response induced by polymicrobial infection with well-characterized periodontal pathogens.


Subject(s)
Adventitia/pathology , Antigens, Neoplasm/immunology , Aorta/pathology , Atherosclerosis/complications , Integrins/immunology , Periodontitis/complications , Plaque, Atherosclerotic/complications , Adventitia/immunology , Adventitia/microbiology , Animals , Antigens, Neoplasm/genetics , Aorta/immunology , Aorta/microbiology , Atherosclerosis/immunology , Atherosclerosis/microbiology , Atherosclerosis/pathology , Bacteroidetes/growth & development , Bacteroidetes/immunology , Bacteroidetes/pathogenicity , Bone Resorption , Disease Models, Animal , Fusobacterium nucleatum/growth & development , Fusobacterium nucleatum/immunology , Fusobacterium nucleatum/pathogenicity , Gene Expression , Gingiva/immunology , Gingiva/microbiology , Gingiva/pathology , In Situ Hybridization, Fluorescence , Inflammasomes , Integrins/deficiency , Integrins/genetics , Lipoproteins, LDL/genetics , Lipoproteins, LDL/immunology , Mice , Mice, Knockout , Microbial Consortia , Periodontitis/immunology , Periodontitis/microbiology , Periodontitis/pathology , Periodontium/immunology , Periodontium/microbiology , Periodontium/pathology , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/microbiology , Plaque, Atherosclerotic/pathology , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/immunology , Porphyromonas gingivalis/pathogenicity , Treponema denticola/growth & development , Treponema denticola/immunology , Treponema denticola/pathogenicity
8.
PLoS One ; 10(6): e0129795, 2015.
Article in English | MEDLINE | ID: mdl-26079509

ABSTRACT

The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.


Subject(s)
Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Fusobacterium nucleatum/physiology , Gene Deletion , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/microbiology , Animals , Aorta/pathology , Biomarkers/metabolism , Cytokines/metabolism , Disease Progression , Gingival Diseases/microbiology , Immunity, Humoral , Inflammation/metabolism , Male , Mice , Mouth/microbiology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Risk Factors
9.
Pathog Dis ; 73(3)2015 Apr.
Article in English | MEDLINE | ID: mdl-25663343

ABSTRACT

Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice.


Subject(s)
Atherosclerosis/microbiology , Bacteroidetes/immunology , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/pathology , Inflammation/microbiology , Periodontal Diseases/complications , Periodontal Diseases/pathology , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Animals , Antibodies, Bacterial/blood , Atherosclerosis/pathology , Bacteremia/microbiology , Chronic Disease , Gram-Negative Bacterial Infections/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , Inflammation/pathology , Lipoproteins/blood , Male , Mice , Mice, Knockout , Nitric Oxide/blood , Periodontal Diseases/immunology , Risk Factors , Serum Amyloid A Protein/analysis
10.
PLoS One ; 10(2): e0115482, 2015.
Article in English | MEDLINE | ID: mdl-25658487

ABSTRACT

Giant cell arteritis (GCA) and Takayasu's disease are inflammatory vasculitic syndromes (IVS) causing sudden blindness and widespread arterial obstruction and aneurysm formation. Glucocorticoids and aspirin are mainstays of treatment, predominantly targeting T cells. Serp-1, a Myxomavirus-derived serpin, blocks macrophage and T cells in a wide range of animal models. Serp-1 also reduced markers of myocardial injury in a Phase IIa clinical trial for unstable coronary disease. In recent work, we detected improved survival and decreased arterial inflammation in a mouse Herpesvirus model of IVS. Here we examine Serp-1 treatment of human temporal artery (TA) biopsies from patients with suspected TA GCA arteritis after implant (TAI) into the aorta of immunodeficient SCID (severe combined immunodeficiency) mice. TAI positive for arteritis (GCApos) had significantly increased inflammation and plaque when compared to negative TAI (GCAneg). Serp-1 significantly reduced intimal inflammation and CD11b+ cell infiltrates in TAI, with reduced splenocyte Th1, Th17, and Treg. Splenocytes from mice with GCApos grafts had increased gene expression for interleukin-1 beta (IL-1ß), IL-17, and CD25 and decreased Factor II. Serp-1 decreased IL-1ß expression. In conclusion, GCApos TAI xenografts in mice provide a viable disease model and have increased intimal inflammation as expected and Serp-1 significantly reduces vascular inflammatory lesions with reduced IL-1ß.


Subject(s)
Giant Cell Arteritis , Serpins/pharmacology , Temporal Arteries , Viral Proteins/pharmacology , Animals , Disease Models, Animal , Female , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/metabolism , Giant Cell Arteritis/pathology , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Takayasu Arteritis/drug therapy , Takayasu Arteritis/metabolism , Takayasu Arteritis/pathology , Temporal Arteries/metabolism , Temporal Arteries/pathology , Temporal Arteries/transplantation
12.
PLoS One ; 9(5): e97811, 2014.
Article in English | MEDLINE | ID: mdl-24836175

ABSTRACT

Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.


Subject(s)
Aorta/microbiology , Atherosclerosis/etiology , Bacteroidaceae Infections/complications , Mouth/microbiology , Periodontitis/complications , Porphyromonas gingivalis , Animals , Atherosclerosis/immunology , Atherosclerosis/microbiology , Bacteroidaceae Infections/immunology , Chronic Disease , Male , Mice , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/immunology , Risk Factors , Transcriptome
13.
Infect Immun ; 82(5): 1959-67, 2014 May.
Article in English | MEDLINE | ID: mdl-24566627

ABSTRACT

Treponema denticola is a predominantly subgingival oral spirochete closely associated with periodontal disease and has been detected in atherosclerosis. This study was designed to evaluate causative links between periodontal disease induced by chronic oral T. denticola infection and atherosclerosis in hyperlipidemic ApoE(-/-) mice. ApoE(-/-) mice (n = 24) were orally infected with T. denticola ATCC 35404 and were euthanized after 12 and 24 weeks. T. denticola genomic DNA was detected in oral plaque samples, indicating colonization of the oral cavity. Infection elicited significantly (P = 0.0172) higher IgG antibody levels and enhanced intrabony defects than sham infection. T. denticola-infected mice had higher levels of horizontal alveolar bone resorption than sham-infected mice and an associated significant increase in aortic plaque area (P ≤ 0.05). Increased atherosclerotic plaque correlated with reduced serum nitric oxide (NO) levels and increased serum-oxidized low-density lipoprotein (LDL) levels compared to those of sham-infected mice. T. denticola infection altered the expression of genes known to be involved in atherosclerotic development, including the leukocyte/endothelial cell adhesion gene (Thbs4), the connective tissue growth factor gene (Ctgf), and the selectin-E gene (Sele). Fluorescent in situ hybridization (FISH) revealed T. denticola clusters in both gingival and aortic tissue of infected mice. This is the first study examining the potential causative role of chronic T. denticola periodontal infection and vascular atherosclerosis in vivo in hyperlipidemic ApoE(-/-) mice. T. denticola is closely associated with periodontal disease and the rapid progression of atheroma in ApoE(-/-) mice. These studies confirm a causal link for active oral T. denticola infection with both atheroma and periodontal disease.


Subject(s)
Aorta/microbiology , Apolipoproteins E/metabolism , Atherosclerosis/etiology , Gram-Negative Bacterial Infections/complications , Periodontal Diseases/etiology , Treponema denticola/physiology , Animals , Antibodies, Bacterial/blood , Apolipoproteins E/genetics , Atherosclerosis/microbiology , Bone Resorption/microbiology , Gingivitis/complications , Gingivitis/microbiology , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Knockout , Periodontal Diseases/microbiology , Risk Factors
14.
PLoS One ; 8(10): e77278, 2013.
Article in English | MEDLINE | ID: mdl-24155935

ABSTRACT

Mouse renal transplantation is a technically challenging procedure. Although the first kidney transplants in mice were performed over 34 years ago and refined some years later, the classical techniques of mouse renal transplantation required clamping both vena cava and aorta simultaneously and carry out suture anastomoses of the renal artery and vein in a heterotopic position. In our laboratory, we have successfully developed mouse orthotopic kidney transplantation for the first time, using a rapid "cuffed" renal vein technique for vessel anastomosis, wherein the donor's renal vein was inserted through an intravenous catheter, folded back and tied. During grafting, the cuffed renal vein was directly inserted into the recipient's renal vein without the need for the clamping vena cava and suturing of renal vein. This technique allowed for the exact transplantation of the kidney into the original position, compared to the classical technique, and has significantly shortened the clamping time due to a quicker and precise anastomosis of renal vein as described. This also allowed for a quicker recovery of the lower extremity activity, reduction in myoglobinuria with resultant kidney graft survival of 88.9%. Thus we believe that the cuffed renal vein technique simplifies microvascular anastomoses and affords important additional benefits.


Subject(s)
Kidney Transplantation , Renal Veins/surgery , Urologic Surgical Procedures/instrumentation , Urologic Surgical Procedures/methods , Anastomosis, Surgical , Animals , Kidney Function Tests , Male , Mice , Mice, Inbred C57BL , Operative Time , Proteinuria/physiopathology
15.
Cardiovasc Hematol Disord Drug Targets ; 13(2): 99-110, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23987998

ABSTRACT

Serpins in the mammalian body are highly potent serine protease inhibitors which modulate both thrombotic and thrombolytic pathway activation, with direct and indirect crosstalk with immune and inflammatory pathways. In this review, we discuss mammalian and viral serpins as regulators of coagulation and inflammation. We focus first on the thrombotic and thrombolytic serine proteases and known interactions between these protease cascades and elements of the innate immune response. Serpin-mediated regulation of the thrombotic pathway is then discussed, with emphasis on those serpins that have been evaluated as potential new drugs. Finally the potential of viral serpins that target the coagulation and thrombolytic cascades as potential therapeutics for anti-inflammatory properties is discussed from basic molecular activity to studies in animal models. The studies discussed range from thrombosis and hemorrhage to vascular disease and transplant rejection and finally to sepsis and clinical studies in humans. In conclusion, these unique proteins, the serpin family, now have demonstrated therapeutic potential for a wide variety of inflammatory diseases in both animal and human studies and represent a new approach for drug development.


Subject(s)
Serine Proteinase Inhibitors/pharmacology , Serpins/pharmacology , Thrombolytic Therapy/methods , Thrombosis/drug therapy , Animals , Humans , Inflammation/drug therapy , Inflammation/enzymology , Serine Proteases/metabolism , Serine Proteinase Inhibitors/therapeutic use , Serpins/therapeutic use , Thrombosis/enzymology
16.
Cardiovasc Hematol Disord Drug Targets ; 13(2): 123-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23988000

ABSTRACT

Serine protease inhibitors (Serpins) play an important role in regulating a wide array of diverse biological activities, representing up to 2-10% of circulating plasma proteins. The serpin suicide inhibitors regulate coagulation (thrombosis and thrombolysis), neurotrophic factors, hormone transport, complement and inflammation, angiogenesis, hormone transport, and blood pressure among many other biological reactions. Select serpins have been associated with progression or remission of selected cancers, making them valuable for therapeutic or diagnostic use. Plasminogen activator inhibitor-1 (PAI-1), the main regulator of thrombolysis, has the potential to either reduce or accelerate tumor growth but blockade of PAI-1 has recently been reported to reduce cancer cell migration, proliferation and survival through modulating the function of urokinase-type plasminogen activator receptor. Maspin is a non-inhibitory serpin, that increases cancer cell sensitivity to apoptosis and inhibits cancer cell migration thus providing a serpin that blocks tumor gorwth. Pigment epithelium derived factor (PEDF) has potent anti-angiogenesis activity and also promotes cancer cell apoptosis. Among other serpins, the mammalian serpin, neuroserpin, and the myxomavirus derived serpin, Serp-1 are under investigation in our lab for their potential tumor-suppressive functions. Further study on the efficacy and mechanisms of serpin mediated anti-cancer activity is warranted in order to develop new serpin-based approaches in cancer therapy.


Subject(s)
Neoplasms/diagnosis , Neoplasms/drug therapy , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/therapeutic use , Serpins/metabolism , Serpins/therapeutic use , Animals , Humans , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Serpins/chemistry , Serpins/pharmacology
17.
Antimicrob Agents Chemother ; 57(9): 4114-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23774438

ABSTRACT

Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c(+) splenocytes (macrophage and dendritic cells) and reduced CD11b(+) tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.


Subject(s)
Hemorrhage/drug therapy , Hemorrhagic Fever, Ebola/drug therapy , Herpesviridae Infections/drug therapy , Herpesviridae Infections/mortality , Membrane Proteins/pharmacology , Myxoma virus/chemistry , Animals , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Ebolavirus , Factor X/antagonists & inhibitors , Factor X/metabolism , Gammaherpesvirinae , Hemorrhage/mortality , Hemorrhage/pathology , Hemorrhage/virology , Hemorrhagic Fever, Ebola/mortality , Hemorrhagic Fever, Ebola/pathology , Hemorrhagic Fever, Ebola/virology , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Inflammation/drug therapy , Inflammation/mortality , Inflammation/pathology , Inflammation/virology , Interferon-gamma/deficiency , Interferon-gamma/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/isolation & purification , Mice , Mice, Inbred BALB C , Mice, Knockout , Myxoma virus/physiology , Neuropeptides/pharmacology , Serpins/pharmacology , Survival Analysis , Tissue Plasminogen Activator/antagonists & inhibitors , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/metabolism , Vasculitis/drug therapy , Vasculitis/mortality , Vasculitis/pathology , Vasculitis/virology , Neuroserpin
18.
J Cancer Sci Ther ; 5: 291-299, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-25798214

ABSTRACT

Modification of the tumor microenvironment by inflammatory cells represents a newly recognized driving force in cancer with critical roles in tumor invasion, growth, angiogenesis, and metastasis. Increased thrombolytic cascade serine proteases, specifically urokinase-type plasminogen activator and its receptor, correlate with inflammatory cell migration, pancreatic cancer growth, invasion and unfavorable outcomes. Inflammation in pancreatic cancer is linked with myeloid-derived suppressor cell (MDSC) activity and cancer progression. Myxomavirus is a complex DNA virus encoding highly potent immune modulators. Serp-1 and M-T7 are two such secreted anti-inflammatory myxomaviral proteins. Serp-1 inhibits uPA, plasmin and coagulation factor X while M-T7 inhibits C, CC, and CXC chemokines. We have explored the potential use of these viral proteins for treatment of a range of human cancer isolates engrafted in severe combined immunodeficient (SCID) mice. Engrafted tumors were treated with either Serp-1, neuroserpin, a related mammalian serpin that inhibits thrombolytic proteases, or M-T7. Serp-1 and neuroserpin inhibited growth of the pancreatic cancer cell line Hs766t (P=0.03 and P=0.01, respectively) at 4 weeks after implantation. Serp-1 also inhibited growth of a second pancreatic cancer cell line MIA PaCa-2 in mice (P=0.02). Growth of the human breast cancer line MDA231 was not inhibited by Serp-1. M-T7, in contrast, did not alter growth of any of the cancer cell lines tested after implant into SCID mice. Serpin inhibition of pancreatic tumor growth was associated with a significant decrease in splenocyte MDSC counts by flow cytometry (P=0.009), without detected change in other splenocyte subpopulations. Serp-1 and NSP treatment also significantly reduced macrophage infiltration in tumors (P=0.001). In summary two anti-inflammatory serpins reduced inflammatory macrophage invasion and pancreatic tumor cell growth, suggesting potential therapeutic efficacy.

19.
Trends Mol Med ; 18(6): 304-10, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22554906

ABSTRACT

Inflammatory responses now have a defined central role in cancer cell growth, invasion, and metastases. Anti-inflammatory proteins from viruses target key stages in immune response pathways and have potential as novel therapeutics for cancer, including highly potent virus-derived inhibitors of protease, chemokine, cytokine, and apoptotic cascades that have been identified. Serine proteases, in addition to their conventional roles in thrombosis, thrombolysis, and apoptotic pathways, are essential regulators of inflammation and are associated with developing cancers. Chemokines drive other inflammatory response pathways with central roles in cell invasion and activation as well as establishing the microenvironment of tumors, modulating immune cell infiltration, cancer cell proliferation, metastasis, and angiogenesis. This review focuses on the mechanisms of action and potential for application of viral immunomodulatory proteins as anticancer therapeutics.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Neoplasms/drug therapy , Viral Proteins/therapeutic use , Animals , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/metabolism , Chemokines/metabolism , Humans , Immunomodulation , Mice , Neoplasms/immunology , Neoplasms/metabolism , Protein Binding , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Receptors, Chemokine/therapeutic use , Serpins/immunology , Serpins/metabolism , Serpins/therapeutic use , Viral Proteins/immunology , Viral Proteins/metabolism , Viruses/immunology , Viruses/metabolism
20.
Methods Enzymol ; 499: 301-29, 2011.
Article in English | MEDLINE | ID: mdl-21683260

ABSTRACT

Over the past 19 years, we have developed a novel myxoma virus-derived anti-inflammatory serine protease inhibitor, termed a serpin, as a new class of immunomodulatory therapeutic. This review will describe the initial identification of viral serpins with anti-inflammatory potential, beginning with preclinical analysis of viral pathogenesis and proceeding to cell and molecular target analyses, and successful clinical trial. The central aim of this review is to describe the development of two serpins, Serp-1 and Serp-2, as a new class of immune modulating drug, from inception to implementation. We begin with an overview of the approaches used for successful mining of the virus for potential serpin immunomodulators in viruses. We then provide a methodological overview of one inflammatory animal model used to test for serpin anti-inflammatory activity followed by methods used to identify cells in the inflammatory response system targeted by these serpins and molecular responses to serpin treatment. Finally, we provide an overview of our findings from a recent, successful clinical trial of the secreted myxomaviral serpin, Serp-1, in patients with unstable inflammatory coronary arterial disease.


Subject(s)
Serpins/metabolism , Viruses/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Clinical Trials as Topic , Humans , Mice , Serpins/genetics , Serpins/pharmacology , Serpins/therapeutic use , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL