Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
J Ethnopharmacol ; 336: 118723, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181285

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY: A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS: The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS: APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS: APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.


Subject(s)
Diabetes Mellitus, Type 2 , Glycopeptides , Heart Failure , Panax , Zebrafish , Animals , Panax/chemistry , Heart Failure/drug therapy , Heart Failure/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Rats , Cell Line , Glycopeptides/pharmacology , Glycopeptides/chemistry , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemistry , Cardiotonic Agents/isolation & purification , Cardiotonic Agents/therapeutic use , Myocytes, Cardiac/drug effects , Endoplasmic Reticulum Stress/drug effects
2.
J Hazard Mater ; 480: 135895, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39312844

ABSTRACT

Polyethylene terephthalate (PET) is one of the most widely used plastics, but its fragmentation into microplastics poses significant environmental challenges. The recycling of PET microplastics is hindered by their low solubility and widespread dispersion in the environment, making microbial in-situ degradation a promising solution. However, existing PET-degrading strains exhibited the limited effectiveness, primarily due to the diffusion of secreted hydrolases away from the PET surface. In this study, Stenotrophomonas pavanii JWG-G1 was engineered to achieve the targeted aggregation of PET hydrolase PETase on the cell surface by fusing it with an endogenous anchor protein. This approach aims to maximise the local concentration of PETase around PET, thereby increasing the overall rate of PET degradation. The PETase surface-aggregated system, S. pavanii/PaL-PETase, demonstrated the highest degradation efficiency, achieving 63.3 % degradation of low-crystallinity PET (lcPET) and 27.3 % degradation of high-crystallinity PET bottles (hcPET) at 30 °C. This represents the highest degradation rate reported for a displayed whole-cell system at ambient temperature. Furthermore, this system exhibited broad-spectrum degradation activity against various polyesters. These findings suggest that this system offers a promising, eco-friendly solution to PET and other polyester pollution, with potential implications for environmental bioremediation strategies.

3.
J Neuroinflammation ; 21(1): 221, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267080

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is common following surgery in elderly patients. The role of the preoperative gut microbiota in POCD has attracted increasing attention, but the potential underlying mechanisms remain unclear. This research aimed to investigate the impact of the preoperative gut microbiota on POCD. METHODS: Herein, we analyzed the preoperative gut microbiota of POCD patients through a prospective specimen collection and retrospective blinded evaluation study. Then, we transferred the preoperative gut microbiota of POCD patients to antibiotic-treated rats and established POCD model by abdominal surgery to explore the impact of the preoperative gut microbiota on pre- and postoperative cognitive function and systemic inflammation. The gut microbiota was analyzed using 16S rRNA sequencing analysis. The Morris water maze test was performed to evaluate learning and memory abilities. The inflammatory cytokines TNF-α, IL-1ß and IL-6 in the serum and hippocampus were measured by ELISA. Microglia were examined by immunofluorescence staining for Iba-1. RESULTS: Based on the decrease in the postoperative MMSE score, 24 patients were identified as having POCD and were matched with 24 control patients. Compared with control patients, POCD patients exhibited higher BMI and lower preoperative MMSE score. The preoperative gut microbiota of POCD patients had lower bacterial richness but a larger distribution, decreased abundance of Firmicutes and increased abundance of Proteobacteria than did that of control patients. Compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients presented an increased abundance of Desulfobacterota, decreased cognitive function, increased levels of TNF-α and IL-1ß in the serum, increased levels of TNF-α and greater microglial activation in the hippocampus. Additionally, correlation analysis revealed a positive association between the abundance of Desulfobacterota and the level of serum TNF-α in rats. Then, we performed abdominal surgery to investigate the impact of the preoperative gut microbiota on postoperative conditions, and the surgery did indeed cause POCD and inflammatory response. Notably, compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients displayed exacerbated cognitive impairment; increased levels of TNF-α, IL-1ß and IL-6 in the serum and hippocampus; and increased activation of microglia in the hippocampus. CONCLUSIONS: Our findings suggest that the preoperative gut microbiota of POCD patients can induce preoperative and aggravate postoperative cognitive impairment and systemic inflammation in rats. Modulating inflammation by targeting the gut microbiota might be a promising approach for preventing POCD.


Subject(s)
Gastrointestinal Microbiome , Inflammation , Postoperative Cognitive Complications , Gastrointestinal Microbiome/physiology , Animals , Rats , Postoperative Cognitive Complications/etiology , Male , Humans , Female , Aged , Rats, Sprague-Dawley , Middle Aged , Retrospective Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/microbiology
4.
Small ; : e2405820, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319503

ABSTRACT

Photovoltaic photodiodes often face challenges in effectively harvesting electrical signals, especially when detecting faint light. In contrast, photomultiplication type photodetectors (PM-PDs) are renowned for their exceptional sensitivity to weak signals. Here, an advanced PM-PD is introduced based on quasi 2D Ruddlesden-Popper (Q-2D RP) perovskites, optimized for weak light detection at minimal operating voltages. The abundant traps at the Q-2D RP surface capture charge carriers, inducing a trap-assisted tunneling mechanism that leads to the photomultiplication (PM) effect. Deep-lying trap states within the Q-2D RP bulk accelerate charge carrier recombination, resulting in an outstanding rise/fall time of 1.14/1.72 µs for the PM-PDs. The PM-PD achieves a remarkable response level of up to 45.89 A W-1 and an extraordinary external quantum efficiency of 14400% at -1 V under an illumination of 1 µW cm- 2. The intrinsic high resistance of the Q-2D perovskite results in a low dark current, enabling an impressive detectivity of 4.23 × 1012 Jones based on noise current at -1 V. Furthermore, the practical application of PM-PDs has been demonstrated in weak-light, high-rate communication systems. These findings confirm the significant potential of PM-PDs based on Q-2D perovskites for weak light detection and suggest new directions for developing low-power, high-performance PM-PDs for future applications.

5.
Virology ; 600: 110214, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39243656

ABSTRACT

Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-ß cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.

6.
Analyst ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240188

ABSTRACT

DNA conformations, which encompass the three-dimensional structures of the DNA strand, play a crucial role in genome regulation. During DNA translocation in a nanopore, various conformations occur due to interactions among force fields, the fluidic environment, and polymer features. The most common conformation is folding, where DNA moves through the nanopore in a two-strand or multi-strand manner, influencing the current signature. Factors such as hydrodynamic drag, ionic environments, and DNA length significantly affect these conformations. Notably, conical nanopores, with their asymmetrical geometry, impose unique constraints on DNA translocation. Our findings reveal that during forward translocation, from the narrow (cis) end to the wide (trans) end, DNA experiences less resistance, resulting in shorter translocation times and higher blockade currents. Conversely, backward translocation, from the wide (trans) end to the narrow (cis) end, leads to longer translocation times and more complex conformations due to increased hydrodynamic drag and geometric constraints. This study employs molecular ping-pong methods to confine DNA, further highlighting the intricate dynamics of DNA folding within nanopores. These insights enhance the understanding of DNA behavior in confined environments, contributing to advancements in nanopore-based sensing and sequencing technologies, with implications for genome regulation and biomedical applications.

7.
Angew Chem Int Ed Engl ; : e202415092, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39290153

ABSTRACT

Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.

8.
Biomacromolecules ; 25(9): 6007-6016, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39207087

ABSTRACT

Two multimodular endoglucanases in glycoside hydrolase family 5, ReCel5 and ElCel5, share 73% identity and exhibit similar modular structures: family 1 carbohydrate-binding module (CBM1); catalytic domain; CBMX2; module of unknown function. However, they differed in their biochemical properties and catalytic performance. ReCel5 showed optimal activity at pH 4.0 and 70 °C, maintaining stability at 70 °C (>80% activity). Conversely, ElCel5 is optimal at pH 3.0 and 50 °C (>50% activity at 50 °C). ElCel5 excels in degrading CMC-Na (256 U/mg vs 53 U/mg of ReCel5). Five domain-truncated (TM1-TM5) and four domain-replaced (RM1-RM4) mutants of ReCel5 with the counterparts of ElCel5 were constructed, and their enzymatic properties were compared with those of the wild type. Only RM1, with ElCel5-CBM1, displayed enhanced thermostability and activity. The hydrolysis of pretreated corn stover was reduced in most TM and RM mutants. Molecular dynamics simulations revealed interdomain interactions within the multimodular endoglucanase, potentially affecting its structural stability and complex biological catalytic processes.


Subject(s)
Cellulase , Hydrolysis , Cellulase/chemistry , Cellulase/metabolism , Cellulase/genetics , Cellulose/metabolism , Cellulose/chemistry , Protein Domains , Catalytic Domain , Substrate Specificity , Zea mays/chemistry , Molecular Dynamics Simulation , Enzyme Stability
9.
Chemosphere ; 364: 143177, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39182733

ABSTRACT

Rapid urbanization considerably alters soil environment, biodiversity, and stability of terrestrial ecosystems. Soil microbial community, a key component of global biodiversity, plays a pivotal role in ecosystem stability and is highly vulnerable to urbanization. However, effects of urbanization on the diversity, stability, and network structure of soil microbial community remain poorly understood. Herein, we investigated the diversity and stability of soil microbial communities, including bacteria, fungi, and protists, across three regions with different levels of urbanization-urban, suburb, and ecoregion-using high-throughput sequencing techniques. Our results revealed that urbanization led to a notable decrease in the alpha diversity of soil microbial community, causing a significant reduction in soil stability, as assessed by the average variation degree (AVD). The loss of stability was linked to the diminished alpha diversity of the soil fungal and protistan communities, along with weakened interactions among bacteria, fungi, and protists. Notably, the majority of keystone species identified through network analysis were classified as bacteria (Proteobacteria) and displayed a strong positive correlation with the environmental factors influencing AVD. This highlights that the variability of bacteria and the immutability of fungi and protists are important to sustain soil microbial stability. Furthermore, structural equation models indicated that protistan diversity primarily drove soil microbial stability across all regions studied. In the suburban and ecoregion areas, soil microbial stability was directly influenced by the soil properties, bacterial diversity, and keystone species, as well as indirectly affected by heavy metals. These results underscore how urbanization can reduce the stability of soil microbial community via declined diversity and network complexity, whereas the establishment of ecoregions maybe contribute to preserve the diversity and stability of soil microbial community.


Subject(s)
Bacteria , Biodiversity , Fungi , Microbiota , Soil Microbiology , Soil , Urbanization , Bacteria/classification , Bacteria/genetics , Fungi/genetics , Soil/chemistry , Ecosystem
11.
Ultrasonics ; 143: 107425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094386

ABSTRACT

Guided Wave (GW)-based Multiple Signal Classification (MUSIC) damage imaging presents several advantages, such as high resolution, which makes it a promising technique for localizing damage in composite structures. However, the application of this technology in aircraft is confronted with various challenges. The variability in performance of MUSIC array sensors is attributed to material and manufacturing process dispersion. Additionally, the conventional wiring of MUSIC array sensors adds considerable weight and is not compatible with complex structural configurations. Furthermore, within intricate configurations, the attenuation of scattering signals induced by structural damage impacts the accuracy of imaging. Moreover, the manual and individual placement of sensors on structures, along with structural anisotropy, may introduce phase errors in the signals detected by MUSIC array sensors. This can lead to a reduction in the accuracy of MUSIC imaging and result in compromised long-term sensor reliability. This paper proposes a high-precision integrated MUSIC array for the diagnosis of complex composite damage. This approach aims to address the challenges related to damage imaging in materials with complex structures. Impedance curve screening and surface-mount co-curing technology are utilized to manage the performance variation of MUSIC array sensors, enhance layout uniformity, and improve long-term stability. Subsequently, a focus compensation algorithm is proposed within the integrated MUSIC design to enhance precision, reduce weight, and adapt to complex structures. The effectiveness of the proposed method is confirmed through experimental validation on an actual complex composite wing box segment, demonstrating a maximum error of 2 cm in locating impact damage.

12.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018249

ABSTRACT

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

13.
Org Lett ; 26(28): 5978-5983, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38967298

ABSTRACT

Current methods for the asymmetric α-sulfenylation of carbonyls cannot be applied to acyclic carbonyls that have two similar substituents at the α-position. This research demonstrated that the electrophilic sulfenylation of geometry-defined acyclic ß,ß-disubstituted enesulfinamides using S-aryl or S-alkyl benzenethiosulfonates can be highly stereoselective. This process results in enantioenriched α,α-disubstituted α-sulfenylated ketone surrogates with sulfur-containing acyclic tetrasubstituted carbon stereocenters bearing two electronically and sterically similar substituents (e.g., methyl and ethyl). Furthermore, by employing the corresponding stereoisomers of enensulfinamides, any of the four stereoisomers of α-sulfenylated ketimines can be selectively accessed.

14.
Sci Total Environ ; 948: 174649, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39025138

ABSTRACT

BACKGROUND: Significant efforts have been devoted to assess the effects of the poly-gamma-glutamic acid (γ-PGA) on crop growth, yield and quality, soil water retention and fertilizer use efficiency. However, few studies have evaluated the effects of γ-PGA on greenhouse gas (GHG) emissions and grain yield from paddy fields with different rice varieties. METHODS: In the present study, a split-plot field experiment was performed to comprehensively evaluate the effects of γ-PGA concentrations (i.e., no application [P0] and 25.0 kg ha-1 of γ-PGA fermentation solution [P1]) and rice varieties (i.e., conventional rice [Huanghuazhan, H], red rice [Gangteyou 8024, R] and black rice [Black indica rice, B]) on the grain yield, GHG emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), net ecosystem economic profit (NEEP) and carbon footprint (CF) during 2022 and 2023 rice-growing seasons in central China. RESULTS: Application of γ-PGA significantly affected the GHGs emissions, NEEP and CF. Compared with P0 treatments, P1 treatments significantly increased the NEEP by 1.2-11.2 %, and decreased the GWP by 12.9-35.4 %, the GHGI by 16.5-35.9 % and the CF by 13.8-26.2 % in 2022-2023. Application of γ-PGA showed a tendency to increase the yield. Under γ-PGA application condition, R treatment exhibited the lowest GWP, GHGI and CF, and the highest yield and NEEP compared with B and H treatments. CONCLUSION: Our results suggest that γ-PGA application is an ecological agricultural management to increase rice yield, reduce greenhouse gas emission and increase economic benefit, and its advantage is more significant for red rice than for other rice varieties.


Subject(s)
Greenhouse Gases , Oryza , Oryza/growth & development , Greenhouse Gases/analysis , China , Polyglutamic Acid/analogs & derivatives , Agriculture/methods , Fertilizers , Edible Grain/growth & development , Global Warming
15.
BMC Med Imaging ; 24(1): 134, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840054

ABSTRACT

OBJECTIVE: To develop a nomogram based on tumor and peritumoral edema (PE) radiomics features extracted from preoperative multiparameter MRI for predicting brain invasion (BI) in atypical meningioma (AM). METHODS: In this retrospective study, according to the 2021 WHO classification criteria, a total of 469 patients with pathologically confirmed AM from three medical centres were enrolled and divided into training (n = 273), internal validation (n = 117) and external validation (n = 79) cohorts. BI was diagnosed based on the histopathological examination. Preoperative contrast-enhanced T1-weighted MR images (T1C) and T2-weighted MR images (T2) for extracting meningioma features and T2-fluid attenuated inversion recovery (FLAIR) sequences for extracting meningioma and PE features were obtained. The multiple logistic regression was applied to develop separate multiparameter radiomics models for comparison. A nomogram was developed by combining radiomics features and clinical risk factors, and the clinical usefulness of the nomogram was verified using decision curve analysis. RESULTS: Among the clinical factors, PE volume and PE/tumor volume ratio are the risk of BI in AM. The combined nomogram based on multiparameter MRI radiomics features of meningioma and PE and clinical indicators achieved the best performance in predicting BI in AM, with area under the curve values of 0.862 (95% CI, 0.819-0.905) in the training cohort, 0.834 (95% CI, 0.780-0.908) in the internal validation cohort and 0.867 (95% CI, 0.785-0.950) in the external validation cohort, respectively. CONCLUSIONS: The nomogram based on tumor and PE radiomics features extracted from preoperative multiparameter MRI and clinical factors can predict the risk of BI in patients with AM.


Subject(s)
Meningeal Neoplasms , Meningioma , Nomograms , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/surgery , Female , Male , Middle Aged , Retrospective Studies , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Neoplasm Invasiveness , Adult , Aged , Multiparametric Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Magnetic Resonance Imaging/methods , Radiomics
16.
ACS Nano ; 18(27): 17547-17556, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38935688

ABSTRACT

Achieving high power conversion efficiency in perovskite solar cells (PSCs) heavily relies on fabricating homogeneous perovskite films. However, understanding microscopic-scale properties such as current generation and open-circuit voltage within perovskite crystals has been challenging due to difficulties in quantifying intragrain behavior. In this study, the local current intensity within state-of-the-art perovskite films mapped by conductive atomic force microscopy reveals a distinct heterogeneity, which exhibits a strong anticorrelation to the external biases. Particularly under different external bias polarities, specific regions in the current mapping show contrasting conductivity. Moreover, grains oriented differently exhibit varied surface potentials and currents, leading us to associate this local current heterogeneity with the grain orientation. It was found that the films treated with isopropanol exhibit ordered grain orientation, demonstrating minimized lattice heterogeneity, fewer microstructure defects, and reduced electronic disorder. Importantly, devices exhibiting an ordered orientation showcase elevated macroscopic optoelectronic properties and boosted device performance. These observations underscore the critical importance of fine-tuning the grain homogenization of perovskite films, offering a promising avenue for further enhancing the efficiency of PSCs.

17.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732884

ABSTRACT

The performance of the tire has a very important impact on the safe driving of the car, and in the actual use of the tire, due to complex road conditions or use conditions, it will inevitably cause immeasurable wear, scratches and other damage. In order to effectively detect the damage existing in the key parts of the tire, a tire surface damage detection method based on image processing was proposed. In this method, the image of tire side is captured by camera first. Then, the collected images are preprocessed by optimizing the multi-scale bilateral filtering algorithm to enhance the detailed information of the damaged area, and the optimization effect is obvious. Thirdly, the image segmentation based on clustering algorithm is carried out. Finally, the Harris corner detection method is used to capture the "salt and pepper" corner of the target region, and the segmsegmed binary image is screened and matched based on histogram correlation, and the target region is finally obtained. The experimental results show that the similarity detection is accurate, and the damage area can meet the requirements of accurate identification.

18.
Anal Chem ; 96(23): 9544-9550, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809167

ABSTRACT

Nanobubbles play an important role in diverse fields, including engineering, medicine, and agriculture. Understanding the characteristics of individual nanobubbles is essential for comprehending fluid dynamics behaviors and advancing nanoscale science across various fields. Here, we report a strategy based on nanopore sensors for characterizing single-digit nanobubbles. We investigated the sizes and diffusion coefficients of nanobubbles at different voltages. Additionally, the finite element simulation and molecular dynamics simulation were introduced to account for counterion concentration variation around nanobubbles in the nanopore. In particular, the differences in stability and surface charge density of nanobubbles under various solution environments have been studied by the ion-stabilized model and the DLVO theory. Additionally, a straightforward method to mitigate nanobubble generation in the bulk for reducing current noise in nanopore sensing was suggested. The results hold significant implications for enhancing the understanding of individual nanobubble characterizations, especially in the nanofluid field.

19.
J Environ Manage ; 361: 121258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815428

ABSTRACT

The rising accumulation of poly(ethylene terephthalate) (PET) waste presents an urgent ecological challenge, necessitating an efficient and economical treatment technology. Here, we developed chemical-biological module clusters that perform chemical pretreatment, enzymatic degradation, and microbial assimilation for the large-scale treatment of PET waste. This module cluster included (i) a chemical pretreatment that involves incorporating polycaprolactone (PCL) at a weight ratio of 2% (PET:PCL = 98:2) into PET via mechanical blending, which effectively reduces the crystallinity and enhances degradation; (ii) enzymatic degradation using Thermobifida fusca cutinase variant (4Mz), that achieves complete degradation of pretreated PET at 300 g/L PET, with an enzymatic loading of 1 mg protein per gram of PET; and (iii) microbial assimilation, where Rhodococcus jostii RHA1 metabolizes the degradation products, assimilating each monomer at a rate above 90%. A comparative life cycle assessment demonstrated that the carbon emissions from our module clusters (0.25 kg CO2-eq/kg PET) are lower than those from other established approaches. This study pioneers a closed-loop system that seamlessly incorporates pretreatment, degradation, and assimilation processes, thus mitigating the environmental impacts of PET waste and propelling the development of a circular PET economy.


Subject(s)
Biodegradation, Environmental , Polyesters , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Polyesters/metabolism , Polyesters/chemistry , Carboxylic Ester Hydrolases
20.
Hypertens Res ; 47(7): 1766-1778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750220

ABSTRACT

Selective venous sampling (SVS), an invasive radiographic procedure that depends on contrast media, holds a unique role in diagnosing and guiding the treatment of certain types of secondary hypertension, particularly in patients who may be candidates for curative surgery. The adrenal venous sampling (AVS), in particular, is established as the gold standard for localizing and subtyping primary aldosteronism (PA). Throughout decades of clinical practice, AVS could be applied not only to PA but also to other endocrine diseases, such as adrenal Cushing syndrome (ACS) and Pheochromocytomas (PCCs). Notably, the application of AVS in ACS and PCCs remains less recognized compared to PA, with the low success rate of catheterization, the controversy of results interpretation, and the absence of a standardized protocol. Additionally, the AVS procedure necessitates enhancements to boost its success rate, with several helpful but imperfect methods emerging, yet continued exploration remains essential. We also observed renal venous sampling (RVS), an operation akin to AVS in principle, serves as an effective means of diagnosing renin-dependent hypertension, aiding in the identification of precise sources of renin excess and helping the selection of surgical candidates with renin angiotensin aldosterone system (RAAS) abnormal activation. Nonetheless, further basic and clinical research is needed. Selective venous sampling (SVS) can be used in identifying cases of secondary hypertension that are curable by surgical intervention. Adrenal venous sampling (AVS) and aldosterone measurement for classificatory diagnosis of primary aldosteronism (PA) are established worldwide. While its primary application is for PA, AVS also holds the potential for diagnosing other endocrine disorders, including adrenal Cushing's syndrome (ACS) and pheochromocytomas (PCCs) through the measurements of cortisol and catecholamine respectively. In addition, renal venous sampling and renin measurement can help to diagnose renovascular hypertension and reninoma.


Subject(s)
Adrenal Glands , Hyperaldosteronism , Hypertension , Humans , Hypertension/diagnosis , Hypertension/blood , Hyperaldosteronism/diagnosis , Hyperaldosteronism/blood , Adrenal Glands/blood supply , Adrenal Gland Neoplasms/blood , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/complications , Cushing Syndrome/diagnosis , Cushing Syndrome/blood , Pheochromocytoma/diagnosis , Pheochromocytoma/blood , Pheochromocytoma/complications , Renin/blood , Aldosterone/blood , Renal Veins
SELECTION OF CITATIONS
SEARCH DETAIL