Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Virulence ; 15(1): 2333562, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38622757

ABSTRACT

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Subject(s)
Enterovirus , Foot-and-Mouth Disease Virus , Picornaviridae Infections , Animals , Humans , Gene Products, pol/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Virus Replication , RNA, Viral/genetics
2.
Appl Microbiol Biotechnol ; 108(1): 283, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573435

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Quantum Dots , Animals , Swine , Microspheres , Porcine Reproductive and Respiratory Syndrome/diagnosis , Coloring Agents , Antibodies, Viral , Chromatography, Affinity
3.
Viruses ; 16(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675963

ABSTRACT

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Subject(s)
Antibodies, Viral , Antigens, Viral , Capsid Proteins , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Parvovirus, Porcine , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Mice , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Parvovirus, Porcine/immunology , Parvovirus, Porcine/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Swine , Immunity, Humoral , Immunity, Cellular , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Serogroup , Mice, Inbred BALB C , Female , Epitopes/immunology , Epitopes/genetics , Sf9 Cells , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
4.
Vet Microbiol ; 293: 110074, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603982

ABSTRACT

African swine fever (ASF) is a highly impactful infectious disease in the swine industry, leading to substantial economic losses globally. The causative agent, African swine fever virus (ASFV), possesses intricate pathogenesis, warranting further exploration. In this study, we investigated the impact of ASFV infection on host gene transcription and organelle changes through macrophage transcriptome sequencing and ultrastructural transmission electron microscopy observation. According to the results of the transcriptome sequencing, ASFV infection led to significant alterations in the gene expression pattern of porcine bone marrow derived macrophages (BMDMs), with 2404 genes showing upregulation and 1579 genes downregulation. Cytokines, and chemokines were significant changes in the expression of BMDMs; there was significant activation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors. According to the observation of the ultrastructure, mitochondrial damage and mitochondrial autophagy were widely present in ASFV-infected cells. The reduced number of macrophage pseudopodia suggested that virus-induced structural changes may compromise pathogen recognition, phagocytosis, and signal communication in macrophages. Additionally, the decreased size and inhibited acidification of secondary lysosomes in macrophages implied suppressed phagocytosis. Overall, ASFV infection resulted in significant changes in the expression of cytokines and chemokines, accompanied by the activation of NLR and TLR signaling pathways. We reported for the first time that ASFV infection led to a reduction in pseudopodia numbers and a decrease in the size and acidification of secondary lysosomes.


Subject(s)
African Swine Fever Virus , African Swine Fever , Cytokines , Macrophages , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/ultrastructure , African Swine Fever Virus/immunology , African Swine Fever/virology , African Swine Fever/immunology , Swine , Macrophages/virology , Cytokines/genetics , Cytokines/metabolism , Transcriptome , Phagocytosis , Signal Transduction , Microscopy, Electron, Transmission , Mitochondria/ultrastructure
5.
Viruses ; 16(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543813

ABSTRACT

African swine fever (ASF) is a highly contagious and hemorrhagic disease caused by infection with the African swine fever virus (ASFV), resulting in a mortality rate of up to 100%. Currently, there are no effective treatments and commercially available vaccines for ASF. Therefore, it is crucial to identify biochemicals derived from host cells that can impede ASFV replication, with the aim of preventing and controlling ASF. The ASFV is an acellular organism that promotes self-replication by hijacking the metabolic machinery and biochemical resources of host cells. ASFV specifically alters the utilization of glucose and glutamine, which are the primary metabolic sources in mammalian cells. This study aimed to investigate the impact of glucose and glutamine metabolic dynamics on the rate of ASFV replication. Our findings demonstrate that ASFV infection favors using glutamine as a metabolic fuel to facilitate self-replication. ASFV replication can be substantially inhibited by blocking glutamine metabolism. The metabolomics analysis of the host cell after late-stage ASFV infection revealed a significant disruption of normal glutamine metabolic pathways due to the abundant expression of PLA (phenyllactic acid). Pretreatment with PLA also inhibited ASFV proliferation and glutamine consumption following infection. The metabolomic analysis also showed that PLA pretreatment greatly slowed down the metabolism of amino acids and nucleotides that depend on glutamine. The depletion of these building blocks directly hindered the replication of ASFV by decreasing the biosynthetic precursors produced during the replication of ASFV's progeny virus. These findings provide valuable insight into the possibility of pursuing the development of antiviral drugs against ASFV that selectively target metabolic pathways.


Subject(s)
African Swine Fever Virus , African Swine Fever , Lactates , Swine , Animals , Glutamine , Glucose , Polyesters/pharmacology , Virus Replication , Mammals
6.
Virology ; 595: 110056, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38552409

ABSTRACT

The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.

7.
Autophagy ; : 1-19, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516932

ABSTRACT

Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host's antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-ß promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-ß:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2.

8.
iScience ; 27(4): 109345, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38500823

ABSTRACT

African swine fever virus (ASFV) infection usually causes viremia within a few days. However, the metabolic changes in pig serum after ASFV infection remain unclear. In this study, serum samples collected from ASFV-infected pigs at different times were analyzed using pseudotargeted metabolomics method. Metabolomic analysis revealed the dopaminergic synapse pathway has the highest rich factor in both ASFV5 and ASFV10 groups. By disrupting the dopamine synaptic pathway, dopamine receptor antagonists inhibited ASFV replication and L-dopa promoted ASFV replication. In addition, guanosine, one of the top20 changed metabolites in both ASFV5 and ASFV10 groups suppressed the replication of ASFV. Taken together, this study revealed the changed serum metabolite profiles of ASFV-infected pigs at various times after infection and verified the effect of the changed metabolites and metabolic pathways on ASFV replication. These findings may contribute to understanding the pathogenic mechanisms of ASFV and the development of target drugs to control ASF.

9.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512977

ABSTRACT

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Mice , ErbB Receptors/metabolism , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease Virus/genetics , Gene Expression Regulation , RNA, Guide, CRISPR-Cas Systems , Swine
10.
Virol Sin ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38499154

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease, which is caused by the FMD virus (FMDV). Although the cell receptor for FMDV has been identified, the specific mechanism of FMDV internalization after infection remains unknown. In this study, we found that kinesin family member 5B (KIF5B) plays a vital role during FMDV internalization. Moreover, we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation (Co-IP) and co-localization in FMDV-infected cells. In particular, the stalk [amino acids (aa) 413-678] domain of KIF5B was indispensable for KIF5B-VP1 interaction. Moreover, overexpression of KIF5B dramatically enhanced FMDV replication; consistently, knockdown or knockout of KIF5B suppressed FMDV replication. Furthermore, we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating. KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection. In conclusion, our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport. This study may provide a new therapeutic target for developing FMDV antiviral drugs.

11.
Clin Immunol ; 262: 110169, 2024 May.
Article in English | MEDLINE | ID: mdl-38479440

ABSTRACT

The process of autophagy, a conservative evolutionary mechanism, is responsible for the removal of surplus and undesirable cytoplasmic components, thereby ensuring cellular homeostasis. Autophagy exhibits a remarkable level of selectivity by employing a multitude of cargo receptors that possess the ability to bind both ubiquitinated cargoes and autophagosomes. In the context of viral infections, selective autophagy plays a crucial role in regulating the innate immune system. Notably, numerous viruses have developed strategies to counteract, evade, or exploit the antiviral effects of selective autophagy. This review encompasses the latest research progress of selective autophagy in regulating innate immunity and virus infectious.


Subject(s)
Virus Diseases , Viruses , Humans , Immunity, Innate , Autophagy/physiology , Homeostasis
12.
J Virol ; 98(4): e0014624, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38440983

ABSTRACT

Peste des petits ruminants is an acute and highly contagious disease caused by the Peste des petits ruminants virus (PPRV). Host proteins play a crucial role in viral replication. However, the effect of fusion (F) protein-interacting partners on PPRV infection is poorly understood. In this study, we found that the expression of goat plasminogen activator urokinase (PLAU) gradually decreased in a time- and dose-dependent manner in PPRV-infected goat alveolar macrophages (GAMs). Goat PLAU was subsequently identified using co-immunoprecipitation and confocal microscopy as an F protein binding partner. The overexpression of goat PLAU inhibited PPRV growth and replication, whereas silencing goat PLAU promoted viral growth and replication. Additionally, we confirmed that goat PLAU interacted with a virus-induced signaling adapter (VISA) to antagonize F-mediated VISA degradation, increasing the production of type I interferon. We also found that goat PLAU reduced the inhibition of PPRV replication in VISA-knockdown GAMs. Our results show that the host protein PLAU inhibits the growth and replication of PPRV by VISA-triggering RIG-I-like receptors and provides insight into the host protein that antagonizes PPRV immunosuppression.IMPORTANCEThe role of host proteins that interact with Peste des petits ruminants virus (PPRV) fusion (F) protein in PPRV replication is poorly understood. This study confirmed that goat plasminogen activator urokinase (PLAU) interacts with the PPRV F protein. We further discovered that goat PLAU inhibited PPRV replication by enhancing virus-induced signaling adapter (VISA) expression and reducing the ability of the F protein to degrade VISA. These findings offer insights into host resistance to viral invasion and suggest new strategies and directions for developing PPR vaccines.


Subject(s)
Goat Diseases , Goats , Host-Pathogen Interactions , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Urokinase-Type Plasminogen Activator , Viral Fusion Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , DEAD Box Protein 58/metabolism , Goat Diseases/immunology , Goat Diseases/metabolism , Goat Diseases/virology , Goats/immunology , Goats/virology , Macrophages, Alveolar , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/growth & development , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/metabolism , Protein Binding , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Viral Fusion Proteins/metabolism
13.
Microorganisms ; 12(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399804

ABSTRACT

African swine fever (ASF) is an acute and severe disease transmitted among domestic pigs and wild boars. This disease is notorious for its high mortality rate and has caused great losses to the world's pig industry in the past few years. After infection, pigs can develop symptoms such as high fever, inflammation, and acute hemorrhage, finally leading to death. African swine fever virus (ASFV) is the causal agent of ASF; it is a large DNA virus with 150-200 genes. Elucidating the functions of each gene could provide insightful information for developing prevention and control methods. Herein, to investigate the function of I267L, porcine alveolar macrophages (PAMs) infected with an I267L-deleted ASFV strain (named ∆I267L) and wild-type ASFV for 18 h and 36 h were taken for transcriptome sequencing (RNA-seq). The most distinct different gene that appeared at both 18 hpi (hours post-infection) and 36 hpi was F3; it is the key link between inflammation and coagulation cascades. KEGG analysis (Kyoto encyclopedia of genes and genomes analysis) revealed the complement and coagulation cascades were also significantly affected at 18 hpi. Genes associated with the immune response were also highly enriched with the deletion of I267L. RNA-seq results were validated through RT-qPCR. Further experiments confirmed that ASFV infection could suppress the induction of F3 through TNF-α, while I267L deletion partially impaired this suppression. These results suggest that I267L is a pathogenicity-associated gene that modulates the hemorrhages of ASF by suppressing F3 expression. This study provides new insights into the molecular mechanisms of ASFV pathogenicity and potential targets for ASFV prevention and control.

14.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412127

ABSTRACT

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/physiology , Spleen/pathology , Virus Replication , Macrophages/pathology
15.
J Virol ; 98(1): e0159923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169281

ABSTRACT

African swine fever virus (ASFV) causes a highly contagious and deadly disease in domestic pigs and European wild boars, posing a severe threat to the global pig industry. ASFV CP204L, a highly immunogenic protein, is produced during the early stages of ASFV infection. However, the impact of CP204L protein-interacting partners on the outcome of ASFV infection is poorly understood. To accomplish this, coimmunoprecipitation and mass spectrometry analysis were conducted in ASFV-infected porcine alveolar macrophages (PAMs). We have demonstrated that sorting nexin 32 (SNX32) is a CP204L-binding protein and that CP204L interacted and colocalized with SNX32 in ASFV-infected PAMs. ASFV growth and replication were promoted by silencing SNX32 and suppressed by overexpressing SNX32. SNX32 degraded CP204L by recruiting the autophagy-related protein Ras-related protein Rab-1b (RAB1B). RAB1B overexpression inhibited ASFV replication, while knockdown of RAB1B had the opposite effect. Additionally, RAB1B, SNX32, and CP204L formed a complex upon ASFV infection. Taken together, this study demonstrates that SNX32 antagonizes ASFV growth and replication by recruiting the autophagy-related protein RAB1B. This finding extends our understanding of the interaction between ASFV CP204L and its host and provides new insights into exploring the relationship between ASFV infection and autophagy.IMPORTANCEAfrican swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality near 100% in domestic pigs. ASF virus (ASFV), which is the only member of the family Asfarviridae, is a dsDNA virus of great complexity and size, encoding more than 150 proteins. Currently, there are no available vaccines against ASFV. ASFV CP204L represents the most abundantly expressed viral protein early in infection and plays an important role in regulating ASFV replication. However, the mechanism by which the interaction between ASFV CP204L and host proteins affects ASFV replication remains unclear. In this study, we demonstrated that the cellular protein SNX32 interacted with CP204L and degraded CP204L by upregulating the autophagy-related protein RAB1B. In summary, this study will help us understand the interaction mechanism between CP204L and its host upon infection and provide new insights for the development of vaccines and antiviral drugs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antiviral Restriction Factors , Autophagy , Sorting Nexins , rab1 GTP-Binding Proteins , Animals , Autophagy-Related Proteins/metabolism , Sus scrofa/virology , Swine/virology , Sorting Nexins/metabolism , Antiviral Restriction Factors/metabolism , rab1 GTP-Binding Proteins/metabolism , Macrophages/virology , Virus Replication
16.
Int J Biol Macromol ; 254(Pt 3): 127724, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898252

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

17.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38078859

ABSTRACT

TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1ß challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1ß stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.


Subject(s)
Cytokines , Interleukin-1 Receptor-Associated Kinases , Signal Transduction , src-Family Kinases , Animals , Mice , Cytokines/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1beta/metabolism , Phosphorylation , src-Family Kinases/metabolism
18.
Vet Res ; 54(1): 114, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037100

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a serious infectious disease and one of the major causes of death in the global pig industry. PRRS virus (PRRSV) strains have complex and diverse genetic characteristics and cross-protection between strains is low, which complicates vaccine selection; thus, the current vaccination strategy has been greatly compromised. Therefore, it is necessary to identify effective natural compounds for the clinical treatment of PRRS. A small molecule library composed of 720 natural compounds was screened in vitro, and we found that Sanggenon C (SC) was amongst the most effective natural compound inhibitors of PRRSV infection. Compared with ribavirin, SC more significantly inhibited PRRSV infection at both the gene and protein levels and reduced the viral titres and levels of protein expression and inflammatory cytokine secretion to more effectively protect cells from PRRSV infection and damage. Mechanistically, SC inhibits activation of the NF-κB signalling pathway by promoting TRAF2 expression, thereby reducing PRRSV replication. In conclusion, by screening natural compounds, we found that SC suppresses PRRSV infection by regulating the TRAF2/NF-κB signalling pathway. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. More importantly, our results demonstrate that SC has potential as a candidate for the treatment of PRRS.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , NF-kappa B/metabolism , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/prevention & control , TNF Receptor-Associated Factor 2/metabolism , Cell Line , Ubiquitin-Protein Ligases/metabolism
19.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4784-4795, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38147981

ABSTRACT

The aim of this study was to produce recombinant porcine interferon gamma (rPoIFN-γ) by Chinese hamster ovarian (CHO) cells expression system and to analyze its antiviral activity. Firstly, we constructed the recombinant eukaryotic expression plasmid pcDNA3.1-PoIFN-γ and transfected into suspension cultured CHO cells for secretory expression of rPoIFN-γ. The rPoIFN-γ was purified by affinity chromatography and identified with SDS-PAGE and Western blotting. Subsequently, the cytotoxicity of rPoIFN-γ was analyzed by CCK-8 test, and the antiviral activity of rPoIFN-γ was evaluated using standard procedures in VSV/PK-15 (virus/cell) test system. Finally the anti-Seneca virus A (SVA) of rPoIFN-γ activity and the induction of interferon-stimulated genes (ISGs) and cytokines were also analyzed. The results showed that rPoIFN-γ could successfully expressed in the supernatant of CHO cells. CCK-8 assays indicated that rPoIFN-γ did not show cytotoxicity on IBRS-2 cells. The biological activity of rPoIFN-γ was 5.59×107 U/mg in VSV/PK-15 system. Moreover, rPoIFN-γ could induced the expression of ISGs and cytokines, and significantly inhibited the replication of SVA. In conclusion, the high activity of rPoIFN-γ was successfully prepared by CHO cells expression system, which showed strong antiviral activity on SVA. This study may facilitate the investigation of rPoIFN-γ function and the development of novel genetically engineered antiviral drugs.


Subject(s)
Interferon-gamma , Sincalide , Swine , Animals , Cricetinae , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Cricetulus , CHO Cells , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Antiviral Agents/pharmacology
20.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4861-4873, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38147987

ABSTRACT

The aim of this study was to produce Erns protein of bovine viral diarrhea virus (BVDV) by using suspensively cultured CHO cells expression system and to analyze the immunogenicity of the purified Erns protein. In this study, the recombinant eukaryotic expression plasmid pcDNA3.1-BVDV-Erns was constructed based on the gene sequence of BVDV-1 NADL strain. The Erns protein was secreted and expressed in cells supernatant after transfecting the recombinant expression plasmid pcDNA3.1-BVDV-Erns into CHO cells. The expression and purification of the Erns protein was analyzed by SDS-PAGE, the reactivity was determined with anti-His monoclonal antibodies and BVDV positive serum with Western blotting. Immunogenicity analysis of the Erns protein was determined after immunizing New Zealand white rabbits, and the serum antibodies were tested by indirect ELISA (iELISA) and indirect immunofluorescence (IFA). The serum neutralizing titer of the immunized rabbits was determined by virus neutralization test. The concentration of the purified Erns protein was up to 0.886 mg/mL by BCA protein quantification kit. The results showed that the Erns protein could be detected with anti-His monoclonal antibodies and anti-BVDV sera. Serum antibodies could be detected by iELISA on the 7th day post-prime immunization, and the antibody level was maintained at a high titer until the 28th day post-immunization. The antibody titer was 1:128 000. Furthermore, the expression of the Erns protein in BVDV-infected MDBK cells could be detected with immunized rabbits sera by IFA. Moreover, antigen-specific neutralizing antibodies of 2.71 log10 was induced in rabbits. In this study, purified BVDV Erns protein was successfully produced using CHO suspension culture system, and the recombinant protein was proved to have a good immunogenicity, which may facilitate the development of BVD diagnosis method and novel subunit vaccine.


Subject(s)
Diarrhea Viruses, Bovine Viral , Viral Vaccines , Rabbits , Animals , Cricetinae , Cricetulus , CHO Cells , Antibodies, Viral , Diarrhea Viruses, Bovine Viral/genetics , Antibodies, Monoclonal/genetics , Diarrhea , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...