Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795062

ABSTRACT

Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.

2.
Front Microbiol ; 15: 1353814, 2024.
Article in English | MEDLINE | ID: mdl-38511006

ABSTRACT

Introduction: Potatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves. Methods: PVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar. Result: Transcriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant-pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR. Conclusion: These results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.

3.
Article in English | MEDLINE | ID: mdl-38158490

ABSTRACT

Alginate lyase is an enzyme that catalyses the hydrolysis of alginate into alginate oligoalginates. To enhance enzyme stability and recovery, a facile strategy for alginate lyase immobilization was developed. Novel magnetic chitosan microspheres were synthesized and used as carriers to immobilize alginate lyase. The immobilization of alginate lyase on magnetic chitosan microspheres was successful, as proven by Fourier transform infrared spectroscopy and X-ray diffraction spectra. Enzyme immobilization exhibited the best performance at an MCM dosage of 1.5 g/L, adsorption time of 2.0 h, glutaraldehyde concentration of 0.2%, and immobilization time of 2.0 h. The optimal pH of the free alginate lyase was 7.5, and this pH value was shifted to 8.0 after immobilization. No difference was observed at the optimal temperature (45 °C) for the immobilized and free enzymes. The immobilized alginate lyase displayed better thermal stability than the free alginate lyase. The Km values of the free and immobilized enzymes were 0.05 mol/L and 0.09 mol/L, respectively. The immobilized alginate lyase retained 72% of its original activity after 10 batch reactions. This strategy was found to be a promising method for immobilizing alginate lyase.

4.
J Environ Manage ; 347: 119158, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37804638

ABSTRACT

Microplastics (MPs) have already spread across the globe and have been found in drinking water and human tissues. This may pose severe threats to human health and water environment. Therefore, this study accurately evaluated the removal effect of metal-modified biochar on polystyrene microplastics (PS-MPs) (1.0 µm) in the water environment using a high-throughput fluorescence quantification method. The results indicated that Fe-modified biochar (FeBC) and Fe/Zn-modified biochar (Fe/ZnBC) had good removal efficiencies for PS-MPs under the dosage of 3 g/L, which were 96.24% and 84.77%, respectively. Although pore effects were observed (such as "stuck", "trapped"), the electrostatic interaction was considered the main mechanism for the adsorption of PS-MPs on metal-modified biochar, whereas the formation of metal-O-PS-MPs may also contribute to the adsorption process. The removal efficiency of PS-MPs by FeBC was significantly reduced under alkaline conditions (pH = 9 and 11) or in the presence of weak acid ions (PO43-, CO32-, HCO3-). A removal efficiency of 72.39% and 78.33% of PS-MPs was achieved from tap water (TW) and lake water (LW) using FeBC when the initial concentration was 20 mg/L. However, FeBC had no removal effect on PS-MPs in biogas slurry (BS) and brewing wastewater (BW) due to the direct competitive adsorption of high concentrations of chemical oxygen demand (COD). The findings of this study highlighted that metal-modified biochar had a potential application in purifying tap water or lake water which contaminated by MPs.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Water , Adsorption , Metals
5.
Huan Jing Ke Xue ; 44(8): 4728-4741, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694665

ABSTRACT

The extensive application of plastic products leads to the increasingly significant harm of plastic wastes to the ecological environment, which is also a focus of global environmental issues. Due to the lack of a sound plastic waste management system, most plastic waste is still treated by the traditional mode or remains in the environment, with low recycling efficiency, and the plastic life cycle has not yet formed. Plastics in the environment will age and degrade under the actions of physical (wear, waves), chemical (ultraviolet radiation, hydrolysis), and biological (fungi, bacteria) factors for a long time and generate micro (nano) plastics. Due to their small particle size, large specific surface area, and charged characteristics, in addition to their own toxicity, they can also be used as carriers or covert carriers of pollutants (heavy metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, bacteria, etc.) to migrate in the environment through runoff, sewage discharge, and hydrometeorology, causing ecological environmental pollution. MPs pollution has been listed as the second largest scientific problem in the field of environmental and ecological science by the United Nations Environment Programme. MPs are widely distributed, and there are different degrees of MPs pollution in the global water (freshwater, ocean), soil, and atmospheric environment. Traces of MPs have also been found in human placentas, human breastmilk, living lungs, and blood in recent years. Therefore, the formation mechanisms of MPs under the actions of physics, chemistry, and microorganisms, as well as their abundance levels and migration characteristics in water, soil, and atmosphere environment were comprehensively reviewed, with the hope of providing reference for monitoring the pollution levels of MPs in the environment, exploring their transport laws in the environment, proposing the management strategy of MPs pollution, and revealing the degradation mechanisms of MPs under different effects.


Subject(s)
Microplastics , Plastics , Humans , Female , Pregnancy , Ultraviolet Rays , Atmosphere , Environment
6.
Acta Pharmacol Sin ; 44(9): 1748-1767, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37095197

ABSTRACT

Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.


Subject(s)
Neuralgia , RNA, Circular , Mice , Animals , RNA, Circular/metabolism , Down-Regulation , DNA Helicases , Hyperalgesia/metabolism , Spinal Cord Dorsal Horn/metabolism , Neuralgia/etiology
7.
Plant Physiol Biochem ; 198: 107692, 2023 May.
Article in English | MEDLINE | ID: mdl-37058965

ABSTRACT

MYB genes play crucial roles in plant response to abiotic stress. However, the function of MYB genes in cotton during abiotic stress is less well elucidated. Here, we found an R2R3-type MYB gene, GhMYB44, was induced by simulated drought (PEG6000) and ABA in three cotton varieties. After drought stress, the GhMYB44-silenced plants showed substantial changes at the physiological level, including significantly increased malondialdehyde content and decreased SOD activity. Silencing the GhMYB44 gene increased stomatal aperture and water loss rate, reduced plant drought tolerance. Transgenic Arabidopsis thaliana over-expressed GhMYB44 (GhMYB44-OE) enhanced resistance to mannitol-simulated osmotic stress. The stomatal aperture of the GhMYB44-OE Arabidopsis was significantly smaller than those of the wild type (WT), and the GhMYB44-OE Arabidopsis increased tolerance to drought stress. Transgenic Arabidopsis had higher germination rate under ABA treatment compared to WT, and the transcript levels of AtABI1, AtPP2CA and AtHAB1 were suppressed in GhMYB44-OE plants, indicating a potential role of GhMYB44 in the ABA signal pathway. These results showed that GhMYB44 acts as a positive regulator in plant response to drought stress, potentially useful for engineering drought-tolerant cotton.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Droughts , Plants, Genetically Modified/genetics , Drought Resistance , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Mol Biol Rep ; 50(6): 4865-4873, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37052804

ABSTRACT

BACKGROUND: The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway. METHODS: The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology. RESULTS: Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers. CONCLUSION: GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.


Subject(s)
Flavonoids , Proanthocyanidins , Flavonoids/genetics , Anthocyanins/metabolism , Proanthocyanidins/metabolism , Plant Proteins/metabolism , Cotton Fiber , Cloning, Molecular , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Profiling/methods
9.
Plant Mol Biol ; 112(1-2): 19-31, 2023 May.
Article in English | MEDLINE | ID: mdl-36929454

ABSTRACT

Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.


Subject(s)
Gossypium , Plant Proteins , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Pectins , Gene Expression Regulation, Plant , Flowers , Plant Infertility/genetics
10.
Plant Physiol Biochem ; 197: 107648, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37001303

ABSTRACT

MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.


Subject(s)
Droughts , Genes, myb , Anthocyanins/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological
11.
J Neurosci ; 43(17): 3009-3027, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36898834

ABSTRACT

RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Male , Mice , Acetyltransferases/metabolism , Cytidine/pharmacology , Cytidine/genetics , Cytidine/metabolism , Ganglia, Spinal/metabolism , Neuralgia/etiology , Neuralgia/metabolism , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , RNA , RNA, Messenger/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism
12.
Mol Pain ; 19: 17448069231152125, 2023.
Article in English | MEDLINE | ID: mdl-36604795

ABSTRACT

Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Male , Mice , Ganglia, Spinal/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/pharmacology , Hyperalgesia/metabolism , Neuralgia/metabolism , Neurons, Afferent/metabolism , Peripheral Nerve Injuries/metabolism , Proto-Oncogenes , Rats, Sprague-Dawley , Transcription Factors/metabolism , Rats
13.
Mol Biotechnol ; 65(4): 645-654, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36155889

ABSTRACT

Leucoanthocyanidin reductase (LAR) is the critical enzyme in the synthesis pathway of proanthocyanidins, which are the primary pigments in brown cotton fibers. Our previous study has revealed significant differences in the expression levels of GhLAR1 between white and brown cotton fibers at 10 DPA. In this work, the expression pattern of the GhLAR1 gene was further studied, and the promoter of GhLAR1 (1780 bp) was isolated and characterized. Bioinformatic analysis indicated that GhLAR1 promoter contained many known light response elements and several defenses related to transcriptional factor-binding boxes, which may partially explain the response of the GhLAR1 to temperature, NaCl, and PEG treatments. Furthermore, GhLAR1 was preferentially and strongly expressed in fibers and flowers of cotton, and the expression levels in all tested tissues (especially fibers) of brown cotton were significantly higher than those in white cotton. Consistent with the expression analysis, the GhLAR1 promoter mainly drove GUS expression in epidermal trichomes and floral organs.


Subject(s)
Anthocyanins , Gossypium , Gossypium/genetics , Anthocyanins/genetics , Anthocyanins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cotton Fiber , Oxidoreductases/genetics , Oxidoreductases/metabolism
14.
Front Microbiol ; 14: 1287921, 2023.
Article in English | MEDLINE | ID: mdl-38235428

ABSTRACT

Introduction: Endophytes are colonizers of healthy plants and they normally exhibit biocontrol activities, such as reducing the occurrence of plant diseases and promoting plant growth. The endophytic bacterium Bacillus halotolerans Q2H2 (Q2H2) was isolated from the roots of potato plants and was found to have an antagonistic effect on pathogenic fungi. Methods: Q2H2 was identified by morphological observations, physiological and biochemical identification, and 16S rRNA gene sequence analysis. Genes related to the anti-fungal and growth-promoting effects were analyzed using whole-genome sequencing and comparative genomic analysis. Finally, we analyzed the growth-promoting and biocontrol activities of Q2H2 in potato plants using pot experiments. Results: Antagonism and non-volatile substance plate tests showed that Q2H2 had strong antagonism against Fusarium oxysporum, Fusarium commune, Fusarium graminearum, Fusarium brachygibbosum, Rhizoctonia solani and Stemphylium solani. The plate test showed that Q2H2 had the ability to produce proteases, cellulases, ß-1,3-glucanase, dissolved organic phosphate, siderophores, indole-3-acetic acid (IAA), ammonia and fix nitrogen. The suitable growth ranges of Q2H2 under different forms of abiotic stress were pH 5-9, a temperature of 15-30°C, and a salt concentration of 1-5%. Though whole-genome sequencing, we obtained sequencing data of approximately 4.16 MB encompassed 4,102 coding sequences. We predicted 10 secondary metabolite gene clusters related to antagonism and growth promotion, including five known products surfactin, bacillaene, fengycin, bacilysin, bacillibactin, and subtilosin A. Average nucleotide identity and comparative genomic analyses revealed that Q2H2 was Bacillus halotolerans. Through gene function annotation, we analyzed genes related to antagonism and plant growth promotion in the Q2H2 genome. These included genes involved in phosphate metabolism (pstB, pstA, pstC, and pstS), nitrogen fixation (nifS, nifU, salA, and sufU), ammonia production (gudB, rocG, nasD, and nasE), siderophore production (fhuC, fhuG, fhuB, and fhuD), IAA production (trpABFCDE), biofilm formation (tasA, bslA, and bslB), and volatile compound production (alsD, ilvABCDEHKY, metH, and ispE), and genes encoding hydrolases (eglS, amyE, gmuD, ganB, sleL, and ydhD). The potato pot test showed that Q2H2 had an obvious growth-promoting effect on potato roots and better control of Fusarium wilt than carbendazim. Conclusion: These findings suggest that the strain-specific genes identified in bacterial endophytes may reveal important antagonistic and plant growth-promoting mechanisms.

15.
Front Microbiol ; 13: 1035901, 2022.
Article in English | MEDLINE | ID: mdl-36532474

ABSTRACT

Introduction: Endophytes are non-pathogenic inhabitants of healthy plant tissues and have been found to promote plant growth and health. The endophytic bacterial strain Q2H1 was isolated from the roots of the potato and was identified to exhibit growth-promoting effects in potato plants. Methods: Whole-genome sequencing was performed to reveal the mechanism underlying its growth-promoting effect. The obtained sequencing data of approximately 5.65 MB encompassed 5,533 coding sequences. Of note, nine secondary metabolite gene clusters, including siderophore gene clusters, closely associated with plant growth promotion (PGP) were predicted by antiSMASH software. Comparative genomic analysis revealed that Q2H1 belongs to the genus Peribacillus. By gene function annotation, those genes related to plant growth-promoting activities, including indole-3-acetic acid (IAA) synthesis in tryptophan metabolism, siderophore biosynthetic activity, phosphate solubilization, nitrogen fixation, and related genes, were summarized. IAA (14.4 µg/ml) was presumptively produced by Q2H1 using the Salkowski colorimetric method. A total of five genes, namely, phoU, pstB, pstA1, pstC, and pstS, were annotated for phosphate solubilization, which is associated with the ability of the Q2H1 strain to solubilize phosphate under in vitro conditions. Results: It is revealed that genes in the Q2H1 genome associated with nitrogen fixation belonged to three groups, namely, nitrogen fixation (nifU, sufU, salA, and nifS), nitrogen metabolism (nirA, nrtB, and nasA), and glutamate synthesis (glnA, gltB, gltD, and gudB), supported by evidence that Q2H1 grew on medium without nitrogen. We have also identified a siderophore gene cluster located on the chromosome of Q2H1, including seven genes (viz., rbsR, rhbf, rhbE, rhbD, rhbC, rhbA, ddc, and an unknown gene). In the in vitro assay, a prominent brown circle around the colony was produced on the chrome azurol S medium at 48 and 72 h post-inoculation, indicating that the siderophore gene cluster in Q2H1 harbored the ability to produce siderophores. Conclusion: In summary, these findings implied that identifying strain-specific genes for their metabolic pathways in bacterial endophytes may reveal a variety of significant functions of plant growth-promoting mechanisms.

16.
Mar Drugs ; 20(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36547889

ABSTRACT

Phlorotannins are a type of natural active substance extracted from brown algae, which belong to a type of important plant polyphenol. Phloroglucinol is the basic unit in its structure. Phlorotannins have a wide range of biological activities, such as antioxidant, antibacterial, antiviral, anti-tumor, anti-hypertensive, hypoglycemic, whitening, anti-allergic and anti-inflammatory, etc. Phlorotannins are mainly used in the fields of medicine, food and cosmetics. This paper reviews the research progress of extraction, separation technology and biological activity of phlorotannins, which will help the scientific community investigate the greater biological significance of phlorotannins.


Subject(s)
Antineoplastic Agents , Phaeophyceae , Seaweed , Tannins/pharmacology , Tannins/chemistry , Seaweed/chemistry , Polyphenols/pharmacology , Phaeophyceae/chemistry
17.
Am J Hematol ; 97(11): 1453-1463, 2022 11.
Article in English | MEDLINE | ID: mdl-36054234

ABSTRACT

Cytomegalovirus (CMV) infection remains a major cause of mortality after hematopoietic stem cell transplantation (HSCT). Current treatments, including antiviral drugs and adoptive cell therapy with CMV-specific cytotoxic T lymphocytes (CTLs), only show limited benefits in patients. T-cell receptor (TCR)-T cell therapy offers a promising option to treat CMV infections. Here, using tetramer-based screening and single-cell TCR cloning technologies, we identified various CMV antigen-specific TCRs from healthy donors, and generated TCR-T cells targeting multiple pp65 epitopes corresponding to three major HLA-A alleles. The TCR-T cells showed efficient cytotoxicity toward epitope-expressing target cells in vitro. After transfer into immune-deficient mice bearing pp65+ HLA+ tumor cells, TCR-T cells induced dramatic tumor regression and exhibited long-term persistence. In a phase I clinical trial (NCT04153279), CMV TCR-T cells were applied to treat patients with CMV reactivation after HSCT. Except one patient who withdrew at early treatment stage, all other six patients were well-tolerated and achieved complete response (CR), no more than grade 2 cytokine release syndrome (CRS) and other adverse events were observed. CMV TCR-T cells persisted up to 3 months. Among them, two patients have survived for more than 1 year. This study demonstrates the great potential in the treatment and prevention of CMV infection following HSCT or other organ transplantation.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Animals , Antiviral Agents , CD8-Positive T-Lymphocytes , Clinical Trials, Phase I as Topic , Cytomegalovirus , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/therapy , Epitopes , HLA-A Antigens , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Phosphoproteins/genetics , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins
18.
Sci Total Environ ; 848: 157654, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35908707

ABSTRACT

Leftover dough is a starch-rich food processing waste of Chinese steamed bread. Leftover dough hydrolysates enriched with glucose and amino acids were used to cultivate the marine microalga Isochrysis galbana to produce docosahexaenoic acid (DHA) under CO2 enrichment. Isochrysis galbana could use mixed carbon sources (CO2, glucose, and amino acids) synchronously to grow and accumulate DHA. Cell growth, the uptake of glucose and amino acids, and DHA production were significantly affected by CO2 enrichment. The maximum biomass concentration of 3.85 g L-1 was achieved with 3 % CO2. And the maximum DHA yield was 65.5 mg L-1 d-1. To enhance DHA production, a two-stage cultivation strategy was successfully developed by this work. The maximum DHA yield of the two-stage culture was elevated by 2.3-fold. It is feasible to produce DHA by Isochrysis galbana using leftover dough under CO2 enrichment.


Subject(s)
Haptophyta , Microalgae , Amino Acids/metabolism , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Docosahexaenoic Acids/metabolism , Food Handling , Glucose/metabolism , Microalgae/metabolism , Starch/metabolism
19.
Article in English | MEDLINE | ID: mdl-35564738

ABSTRACT

Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology. Heavy metals (HMs) removal is always regarded as one of the most important tasks in constructed wetlands, which have aroused increasing concern in the field of contamination control in recent times. The fillers of constructed wetlands play an important role in HMs removal. However, traditional wetland fillers (e.g., zeolite, sand, and gravel) are known to be imperfect because of their low adsorption capacity. Regarding HMs removal, our work involved the selection of prominent absorbents, the evaluation of adsorption stability for various treatments, and then the possibility of applying this HM removal technology to constructed wetlands. For this purpose, several phosphate materials were tested to remove the heavy metals Cu and Zn. Three good phosphates including hydroxyapatite (HAP), calcium phosphate (CP), and physic acid sodium salt hydrate (PAS) demonstrated fast removal efficiency of HMs (Cu2+, Zn2+) from aqueous solution. The maximum removal rates of Cu2+ and Zn2+ by HAP, CP, and PAS reached 81.6% and 95.8%; 66.9% and 70.4%; 98.8% and 1.99%, respectively. In addition, better adsorption stability of these heavy metals was found to occur with a wide variation of desorption time and pH range. The most remarkable efficiency for heavy metal removal among tested phosphates was PAS, followed by HAP and CP. This study can provide a basis for the application of HMs removal in manmade wetland systems.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Phosphates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis , Wetlands
20.
Plant Biotechnol J ; 20(8): 1546-1560, 2022 08.
Article in English | MEDLINE | ID: mdl-35503731

ABSTRACT

Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.


Subject(s)
Gossypium , Proanthocyanidins , Anthocyanins , Color , Cotton Fiber , Gene Expression Regulation, Plant/genetics , Gossypium/metabolism , Plant Breeding , Plant Proteins/genetics , Proanthocyanidins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...