Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
NPJ Biofilms Microbiomes ; 10(1): 72, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191812

ABSTRACT

Cophylogeny has been identified between gut bacteria and their animal host and is highly relevant to host health, but little research has extended to gut bacteriophages. Here we use bee model to investigate host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. Through metagenomic sequencing upon different bee species, the gut phageome revealed a more variable composition than the gut bacteriome. Nevertheless, the bacteriome and the phageome showed a significant association of their dissimilarity matrices, indicating a reciprocal interaction between the two kinds of communities. Most of the gut phages were host generalist at the viral cluster level but host specialist at the viral OTU level. While the dominant gut bacteria Gilliamella and Snodgrassella exhibited matched phylogeny with bee hosts, most of their phages showed a diminished level of cophylogeny. The evolutionary rates of the bee, the gut bacteria and the gut phages showed a remarkably increasing trend, including synonymous and non-synonymous substitution and gene content variation. For all of the three codiversified tripartite members, however, their genes under positive selection and genes involving gain/loss during evolution simultaneously enriched the functions into metabolism of nutrients, therefore highlighting the tripartite coevolution that results in an enhanced ecological fitness for the whole holobiont.


Subject(s)
Bacteria , Bacteriophages , Gastrointestinal Microbiome , Host Specificity , Phylogeny , Animals , Bacteriophages/genetics , Bacteriophages/physiology , Bees/virology , Bees/microbiology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Metagenomics/methods , Metagenome
2.
Ecotoxicol Environ Saf ; 282: 116706, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38996647

ABSTRACT

Antibiotics are frequently employed to control bacterial diseases in honeybees, but their broad-spectrum action can disrupt the delicate balance of the gut microbiome, leading to dysbiosis. This imbalance in the gut microbiota of honeybees adversely affects their physiological health and weakens their resistance to pathogens, including viruses that significantly threaten honeybee health. In this study, we investigated whether tetracycline-induced gut microbiome dysbiosis promotes the replication of Israeli acute paralysis virus (IAPV), a key virus associated with colony losses and whether IAPV infection exacerbates gut microbiome dysbiosis. Our results demonstrated that tetracycline-induced gut microbiome dysbiosis increases the susceptibility of honeybees to IAPV infection. The viral titer in worker bees with antibiotic-induced gut microbiome dysbiosis prior to IAPV inoculation was significantly higher than in those merely inoculated with IAPV. Furthermore, we observed a synergistic effect between tetracycline and IAPV on the disruption of the honeybee gut microbiome balance. The progression of IAPV replication could, in turn, exacerbate antibiotic-induced gut microbiome dysbiosis in honeybees. Our research provides novel insights into the role of the gut microbiota in host-virus interactions, emphasizing the complex interplay between antibiotic use, gut microbiome health, and viral susceptibility in honeybees. We highlight the crucial role of a balanced gut microbiota in honey bees for their immune response against pathogens and emphasize the importance of careful, safe antibiotic use in beekeeping to protect these beneficial microbes.


Subject(s)
Anti-Bacterial Agents , Dicistroviridae , Dysbiosis , Gastrointestinal Microbiome , Tetracycline , Animals , Bees/virology , Bees/microbiology , Bees/drug effects , Gastrointestinal Microbiome/drug effects , Dysbiosis/chemically induced , Dysbiosis/virology , Tetracycline/pharmacology , Tetracycline/toxicity , Dicistroviridae/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity
3.
Front Bioeng Biotechnol ; 12: 1399629, 2024.
Article in English | MEDLINE | ID: mdl-38832132

ABSTRACT

Silkworm was the first domesticated insect and has important economic value. It has also become an ideal model organism with applications in genetic and expression studies. In recent years, the use of transgenic strategies has made the silkworm silk gland an attractive bioreactor for the production of recombinant proteins, in particular, piggyBac-mediated transgenes. However, owing to differences in regulatory elements such as promoters, the expression levels of exogenous proteins have not reached expectations. Here, we used targeted gene editing to achieve site-specific integration of exogenous genes on genomic DNA and established the fibroin light chain (FibL) in-fusion expression system by TALEN-mediated homology-directed recombination. First, the histidine-rich cuticular protein (CP) was successfully site-directed inserted into the native FibL, and the FibL-CP fusion gene was correctly transcribed and expressed in the posterior silk gland under the control of the endogenous FibL promoter, with a protein expression level comparable with that of the native FibL protein. Moreover, we showed based on molecular docking that the fusion of FibL with cuticular protein may have a negative effect on disulfide bond formation between the C-terminal domain of fibroin heavy chain (FibH) and FibL-CP, resulting in abnormal spinning and cocoon in homozygotes, indicating a significant role of FibL in silk protein formation and secretion. Our results demonstrate the feasibility of using the FibL fusion system to express exogenous proteins in silkworm. We expect that this bioreactor system will be used to produce more proteins of interest, expanding the application value of the silk gland bioreactor.

4.
NPJ Sci Food ; 8(1): 24, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693255

ABSTRACT

Honey authentication and traceability are crucial not only for economic purposes but also for ensuring safety. However, the widespread adoption of cutting-edge technologies in practical applications has been hampered by complex, time-consuming sample pre-treatment processes, the need for skilled personnel, and substantial associated expenses. This study aimed to develop a simple and cost-effective molecular technique to verify the entomological source of honey. By utilizing newly designed primers, we successfully amplified the mitochondrial 16S ribosomal RNA gene of honey bees from honey, confirming the high quality of the extracted DNA. Employing RFLP analysis with AseI endonuclease, species-specific restriction patterns were generated for honey derived from six closely related honey bees of the Apis genus. Remarkably, this method was proven equally effective in identifying heat-treated and aged honey by presenting the same RFLP profiles as raw honey. As far as we know, this is the initial research of the simultaneous differentiation of honey from closely related honey bee species using the restriction endonuclease AseI and mitochondrial 16S rRNA gene fragments. As a result, it holds tremendous potential as a standardized guideline for regulatory agencies to ascertain the insect origins of honey and achieve comprehensive traceability.

5.
Pathogens ; 13(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38787274

ABSTRACT

The expansion of pathogen distribution may result in a new threat to the host. The braconid Syntretomorpha szaboi Papp is an obligate parasite that targets Apis cerana, the Eastern honeybee, engaging in endoparasitism by ovipositing eggs inside the host bee. Although S. szaboi has been documented in India and in various regions across China, its epidemiological data are notably lacking. In this study, we summarized the distribution of S. szaboi based on the available literature and described the symptoms of infested honeybee workers. We also investigated the infestation rate in 36 apiaries in Zhejiang Province, China, after a new occurrence of the parasite was reported in these regions in 2020. A rapid increase in infestation rate was found from the year 2021 to 2022, reaching 53.88% at the colony level of the sampled colonies in the Jinhua and Wenzhou apiaries. The infestation rate at an individual level in positive colonies reached an average of 26%. A monthly survey showed high seasonal variation in S. szaboi infestation, with the peak occurring from May to August. These results suggest that S. szaboi poses a great threat to A. cerana. Further research is needed to elucidate its epidemiology and pathology and to develop disease prevention and control strategies.

6.
J Adv Res ; 44: 1-11, 2023 02.
Article in English | MEDLINE | ID: mdl-36725182

ABSTRACT

INTRODUCTION: Host shift of parasites may have devastating effects on the novel hosts. One remarkable example is that of the ectoparasitic mite Varroa destructor, which has shifted its host from Eastern honey bees (Apis cerana) to Western honey bees (Apis mellifera) and posed a global threat to apiculture. OBJECTIVES: To identify the genetic factors underlying the reproduction of host-shifted V. destructor on the new host. METHODS: Genome sequencing was conducted to construct the phylogeny of the host-shifted and non-shifted mites and to screen for genomic signatures that differentiated them. Artificial infestation experiment was conducted to compare the reproductive difference between the mites, and transcriptome sequencing was conducted to find differentially expressed genes (DEGs) during the reproduction process. RESULTS: The host-shifted and non-shifted V. destructor mites constituted two genetically distinct lineages, with 15,362 high-FST SNPs identified between them. Oogenesis was upregulated in host-shifted mites on the new host A. mellifera relative to non-shifted mites. The transcriptomes of the host-shifted and non-shifted mites differed significantly as early as 1h post-infestation. The DEGs were associated with nine genes carrying nonsynonymous high-FST SNPs, including mGluR2-like, Lamb2-like and Vitellogenin 6-like, which were also differentially expressed, and eIF4G, CG5800, Dap160 and Sas10, which were located in the center of the networks regulating the DEGs based on protein-protein interaction analysis. CONCLUSIONS: The annotated functions of these genes were all associated with oogenesis. These genes appear to be the key genetic determinants of the oogenesis of host-shifted mites on the new host. Further study of these candidate genes will help elucidate the key mechanism underlying the success of host shifts of V. destructor.


Subject(s)
Bees , Parasites , Varroidae , Animals , Bees/parasitology , Genome , Genomics , Oogenesis/genetics , Parasites/genetics , Varroidae/genetics
7.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36799935

ABSTRACT

There have been many population-based genomic studies on human-managed honeybees (Apis mellifera and Apis cerana), but there has been a notable lack of analysis with regard to wild honeybees, particularly in relation to their evolutionary history. Nevertheless, giant honeybees have been found to occupy distinct habitats and display remarkable characteristics, which are attracting an increased amount of attention. In this study, we de novo sequenced and then assembled the draft genome sequence of the Himalayan giant honeybee, Apis laboriosa. Phylogenetic analysis based on genomic information indicated that A. laboriosa and its tropical sister species Apis dorsata diverged ∼2.61 Ma, which supports the speciation hypothesis that links A. laboriosa to geological changes throughout history. Furthermore, we re-sequenced A. laboriosa and A. dorsata samples from five and six regions, respectively, across their population ranges in China. These analyses highlighted major genetic differences for Tibetan A. laboriosa as well as the Hainan Island A. dorsata. The demographic history of most giant honeybee populations has mirrored glacial cycles. More importantly, contrary to what has occurred among human-managed honeybees, the demographic history of these two wild honeybee species indicates a rapid decline in effective population size in the recent past, reflecting their differences in evolutionary histories. Several genes were found to be subject to selection, which may help giant honeybees to adapt to specific local conditions. In summary, our study sheds light on the evolutionary and adaptational characteristics of two wild giant honeybee species, which was useful for giant honeybee conservation.


Subject(s)
Adaptation, Physiological , Metagenomics , Bees/genetics , Animals , Humans , Phylogeny , Adaptation, Physiological/genetics , China , Demography
8.
Viruses ; 14(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36146677

ABSTRACT

Sacbrood virus (SBV) is one of the many viruses that infect both the Western honeybee (Apis mellifera) and the Eastern honeybee (Apis cerana). Recently, the interspecies transmission of SBV has been discovered, especially among wild pollinators. This newly discovered evolutionary occurrence regarding SBV indicates a much wider host range than previously believed, causing further concern about the future sustainability of agriculture and the resilience of ecosystems. Over the past few decades, vast numbers of studies have been undertaken concerning SBV infection in honeybees, and remarkable progress has been made in our understanding of the epidemiology, pathogenesis, transmission, and manifestations of SBV infection in honeybees and other pollinators. Meanwhile, some methods, including Chinese medicine, have been established to control and prevent sacbrood disease in A. cerana in Asian countries. In this review, we summarize the existing knowledge of SBV and address the gaps in the knowledge within the existing literature in the hope of providing future directions for the research and development of management strategies for controlling the spread of this deadly disease.


Subject(s)
Ecosystem , RNA Viruses , Animals , Asia , Bees , Phylogeny
9.
J Adv Res ; 37: 19-31, 2022 03.
Article in English | MEDLINE | ID: mdl-35499050

ABSTRACT

Introduction: The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives: We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods: Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results: Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees' gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion: Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bees/genetics , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Metagenome , Tandem Mass Spectrometry
10.
J Hazard Mater ; 423(Pt B): 127213, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34844347

ABSTRACT

Biodegradation of plastic polymers by plastic-eating insects such as the greater wax moth (Galleria mellonella) might be promising for reducing plastic pollution, but direct in vivo evidence along with the related metabolic pathways and role of gut microbiota require further investigation. In this study, we investigated the in vivo degradation process, underlying potential metabolic pathways, and involvement of the gut microbiota in polystyrene (PS) biodegradation via enforcing injection of G. mellonella larvae (Tianjin, China) with PS microbeads (0.5 mg/larva; Mn: 540 and Mw: 550) and general-purpose PS powders (2.5 mg/larva; Mn: 95,600 and Mw: 217,000). The results indicated that the PS microplastics were depolymerized and completely digested independent of gut microbiota in G. mellonella although the metabolism could be enhanced by gut microbiota. Based on comparative metabolomic and liquid chromatography analyses, we proposed two potential metabolic pathways of PS in the intestine of G. mellonella larvae: the styrene oxide-phenylacetaldehyde and 4-methylphenol-4-hydroxybenzaldehyde-4-hydroxybenzoate pathways. These results suggest that the enzymes of G. mellonella are responsible for the efficient biodegradation of PS. Further study is needed to identify these enzymes and investigate the underlying catalytic mechanisms.


Subject(s)
Gastrointestinal Microbiome , Moths , Animals , Digestion , Larva/metabolism , Metabolic Networks and Pathways , Microplastics , Plastics , Polystyrenes/metabolism
11.
J Agric Food Chem ; 69(48): 14415-14427, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34807598

ABSTRACT

Royal jelly, also called bee milk, is a source of high-quality proteins. Royal jelly proteins serve as not only a rich source of essential amino acids and functional donors but also an excellent substrate for preparing bioactive peptides. Most naturally occurring bioactive peptides in royal jelly are antibacterial, while peptides derived from proteolytic reactions are shown to exert antihypertensive, antioxidative, and anti-aging activities. Further studies are warranted to characterize the functional properties of major royal jelly proteins and peptides, to explore the preparation of bioactive peptides and the potential novel activities, to improve their bioavailability, to enhance the production efficiency for commercial availability, and finally to open up new applications for royal jelly as a functional food and potential therapeutic agent.


Subject(s)
Antioxidants , Fatty Acids , Animals , Anti-Bacterial Agents/pharmacology , Bees , Peptides/pharmacology
12.
Foods ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34829164

ABSTRACT

Honey maturity, a critical factor for quality evaluation, is difficult to detect in the current industry research. The objective of this study was to explore the changes in the composition and find potential maturity indicators of rape honey at different maturity stages through evaluating physicochemical parameters (moisture, sugars, pH, electrical conductivity, total protein, total phenols, total flavonoids, proline, and enzyme activity), the antioxidant capacity, and volatile components. The relevant results are as follows: 1. As the maturity increased, the moisture, sucrose, and maltose content of rape honey gradually decreased, while the glucose, fructose, and total protein content gradually increased. The activities of diastase, invertase, and ß-glucosidase showed a significant increase with the elevation of ripening days, and the activity of glucose oxidase reached the highest before completely capping. 2. The antioxidant capacity of honey increased with the increase in honey maturity. There is a significant and strong correlation between the bioactive components of rape honey and antioxidant capacity (p < 0.01, |r| > 0.857). 3. Thirty-five volatile components have been identified. Nonanal, benzaldehyde monomer, and benzaldehyde dimer can be used as potential indicators for the identification of honey maturity stages. Principal component analysis (PCA) based on antioxidant parameters and volatile components can identify the maturity of honey.

13.
J Pest Sci (2004) ; 94(4): 1487-1504, 2021.
Article in English | MEDLINE | ID: mdl-34720788

ABSTRACT

In a globalized world, parasites are often brought in contact with new potential hosts. When parasites successfully shift host, severe diseases can emerge at a large cost to society. However, the evolutionary processes leading to successful shifts are rarely understood, hindering risk assessment, prevention, or mitigation of their effects. Here, we screened populations of Varroa destructor, an ectoparasitic mite of the honeybee genus Apis, to investigate their genetic structure and reproductive potential on new and original hosts. From the patterns identified, we deduce the factors that influenced the macro- and microevolutionary processes that led to the structure observed. Among the mite variants identified, we found two genetically similar populations that differed in their reproductive abilities and thus in their host specificity. These lineages could interbreed, which represents a threat due to the possible increased virulence of the parasite on its original host. However, interbreeding was unidirectional from the host-shifted to the nonshifted native mites and could thus lead to speciation of the former. The results improve our understanding of the processes affecting the population structure and evolution of this economically important mite genus and suggest that introgression between shifted and nonshifted lineages may endanger the original host. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-020-01322-7.

14.
Front Cell Dev Biol ; 9: 690167, 2021.
Article in English | MEDLINE | ID: mdl-34422813

ABSTRACT

Embryonic development depends on a highly coordinated shift in transcription programs known as the maternal-to-zygotic transition (MZT). It remains unclear how haploid and diploid embryo coordinate their genomic activation and embryonic development during MZT in haplodiploid animals. Here, we applied a single-embryo RNA-seq approach to characterize the embryonic transcriptome dynamics in haploid males vs. diploid females of the haplodiploid insect honeybee (Apis mellifera). We observed typical zygotic genome activation (ZGA) occurred in three major waves specifically in female honeybee embryos; haploid genome activation was much weaker and occurred later. Strikingly, we also observed three waves of transcriptional activation for thousands of long non-coding transcripts (lncRNA), 73% of which are transcribed from intronic regions and 65% were specific to female honeybee embryos. These findings support a model in which introns encode thousands of lncRNAs that are expressed in a diploid-embryo-specific and ZGA-triggered manner that may have potential functions to regulate gene expression during early embryonic development in the haplodiploid insect honeybee.

15.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066799

ABSTRACT

Honey has good antimicrobial properties and can be used for medical treatment. The antimicrobial properties of unifloral honey varieties are different. In this study, we evaluated the antimicrobial and antioxidant activities of nine kinds of Chinese monofloral honeys. In addition, headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) technology was used to detect their volatile components. The relevant results are as follows: 1. The agar diffusion test showed that the diameter of inhibition zone against Staphylococcus aureus of Fennel honey (21.50 ± 0.41 mm), Agastache honey (20.74 ± 0.37 mm), and Pomegranate honey (18.16 ± 0.11 mm) was larger than that of Manuka 12+ honey (14.27 ± 0.10 mm) and Manuka 20+ honey (16.52 ± 0.12 mm). The antimicrobial activity of Chinese honey depends on hydrogen peroxide. 2. The total antioxidant capacity of Fennel honey, Agastache honey, and Pomegranate honey was higher than that of other Chinese honeys. There was a significant positive correlation between the total antioxidant capacity and the total phenol content of Chinese honey (r = 0.958). The correlation coefficient between the chroma value of Chinese honey and the total antioxidant and the diameter of inhibition zone was 0.940 and 0.746, respectively. The analyzed dark honeys had better antimicrobial and antioxidant activities. 3. There were significant differences in volatile components among Fennel honey, Agastache honey, Pomegranate honey, and Manuka honey. Hexanal-D and Heptanol were the characteristic components of Fennel honey and Pomegranate honey, respectively. Ethyl 2-methylbutyrate and 3-methylpentanoic acids were the unique compounds of Agastache honey. The flavor fingerprints of the honey samples from different plants can be successfully built using HS-GC-IMS and principal component analysis (PCA) based on their volatile compounds. Fennel honey, Agastache honey, and Pomegranate honey are Chinese honey varieties with excellent antimicrobial properties, and have the potential to be developed into medical grade honey.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Honey/analysis , Honey/classification , Staphylococcus aureus/drug effects , Agastache/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , China , Chromatography, Gas , Foeniculum/chemistry , Hydrogen Peroxide/pharmacology , Ion Mobility Spectrometry , Leptospermum/chemistry , Microbial Sensitivity Tests , Phenols/pharmacology , Pomegranate/chemistry
16.
Viruses ; 13(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33920919

ABSTRACT

The ectoparasitic mite, Varroa destructor, feeds directly on honey bees and serves as a vector for transmitting viruses among them. The Varroa mite causes relatively little damage to its natural host, the Eastern honey bee (Apis cerana) but it is the most devastating pest for the Western honey bee (Apis mellifera). Using Illumina HiSeq sequencing technology, we conducted a metatranscriptome analysis of the microbial community associated with Varroa mites. This study led to the identification of a new Chinese strain of Varroa destructor virus-2 (VDV-2), which is a member of the Iflaviridae family and was previously reported to be specific to Varroa mites. A subsequent epidemiological investigation of Chinese strain of VDV-2 (VDV-2-China) showed that the virus was highly prevalent among Varroa populations and was not identified in any of the adult workers from both A. mellifera and A.cerana colonies distributed in six provinces in China, clearly indicating that VDV-2-China is predominantly a Varroa-adapted virus. While A. mellifera worker pupae exposed to less than two Varroa mites tested negative for VDV-2-China, VDV-2-China was detected in 12.5% of the A. mellifera worker pupae that were parasitized by more than 10 Varroa mites, bringing into play the possibility of a new scenario where VDV-2 could be transmitted to the honey bees during heavy Varroa infestations. Bioassay for the VDV-2-China infectivity showed that A. cerana was not a permissive host for VDV-2-China, yet A. mellifera could be a biological host that supports VDV-2-China's replication. The different replication dynamics of the virus between the two host species reflect their variation in terms of susceptibility to the virus infection, posing a potential threat to the health of the Western honey bee. The information gained from this study contributes to the knowledge concerning genetic variabilities and evolutionary dynamics of Varroa-borne viruses, thereby enhancing our understanding of underlying molecular mechanisms governing honey bee Varroosis.


Subject(s)
RNA Virus Infections/virology , RNA Viruses , Varroidae/virology , Animals , Bees/parasitology , China , Host Specificity , Host-Parasite Interactions , RNA Viruses/classification , RNA Viruses/isolation & purification
17.
Microbiologyopen ; 10(1): e1162, 2021 01.
Article in English | MEDLINE | ID: mdl-33650796

ABSTRACT

It is a widespread practice in China to keep colonies of both the western honey bee, Apis mellifera, and the eastern honey bee, Apis cerana, in close proximity. However, this practice increases opportunities for spillover of parasites and pathogens between the two host bee species, impacting spatial and temporal patterns in the occurrence and prevalence of the viruses that adversely affect bee health. We conducted a 1-year large-scale survey to assess the current status of viral infection in both A. mellifera and A. cerana in China. Our study focused on multiple aspects of viral infections in honey bees, including infection rate, viral load, seasonal variation, regional variation, and phylogenetic relationships of the viruses within the same species found in this study and other parts of the world. The survey showed that the black queen cell virus (BQCV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV) were common in both A. mellifera and A. cerana, and infection dynamics of BQCV, DWV, and SBV between bee species or seasons were significantly different. DWV was the most common virus in A. mellifera, and its infection rate and load in A. mellifera were higher than those in A. cerana, which reflects the high susceptibility of A. mellifera to Varroa destructor infestation. The infection rate and viral load of SBV were higher in A. cerana than in A. mellifera, indicating that SBV poses a greater threat to A. cerana than to A. mellifera. Our results also suggested that there was no geographical variation in viral dynamics in A. mellifera and A. cerana. Phylogenetic analyses of BQCV, DWV, IAPV, and SBV suggested the cross-regional and cross-species spread of these viruses. This study provides important insights into the complex relationships between viruses and their hosts in different seasons and regions, which will be important for developing effective disease management strategies to improve bee health.


Subject(s)
Bees/virology , Dicistroviridae/isolation & purification , RNA Viruses/isolation & purification , Viral Load , Virus Diseases/epidemiology , Animals , Bees/classification , China/epidemiology , Geography , Phylogeny , Seasons , Virus Diseases/pathology
18.
Mar Pollut Bull ; 164: 111995, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33493858

ABSTRACT

Living in close proximity to the sediment of coastal areas, bivalves may be exposed to veterinary antibiotic residuals and microplastics (MPs) simultaneously. However, the immunotoxic impacts of veterinary antibiotics remain unknown in bivalves, let alone their interactions with MPs. Therefore, the immune responses of two representative veterinary antibiotics, oxytetracycline and florfenicol, was investigated in a bivalve species, the blood clam (Tegillarca granosa). The effects of the copresence of MPs on the immune responses triggered by these antibiotics were also analyzed. Results showed that exposure to antibiotics investigated led to significant alteration in hematic parameters and reduction in lectin content in serum. In addition to inducing ROS production, aggravating lipid peroxidation and DNA damage, and suppressing the hemocyte viability, antibiotic treatments also downregulated the expression of immune- and detoxification-related genes but upregulated apoptosis-related Caspase-3. Furthermore, the toxic impacts of antibiotics were found to be significantly increased by the copresence of MPs.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/toxicity , Immunity , Microplastics , Plastics , Polystyrenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Front Microbiol ; 12: 781746, 2021.
Article in English | MEDLINE | ID: mdl-35116011

ABSTRACT

Gut microbial community plays an important role in the regulation of insect health. Antibiotic treatment is powerful to fight bacterial infections, while it also causes collateral damage to gut microbiome, which may have long-lasting consequences for host health. However, current studies on honey bees mainly focus on the impact of direct exposure to antibiotics on individual bees, and little is known about the impact of social transmission of antibiotic-induced gut community disorder in honey bee colonies. In order to provide insight into the potential pass-on effect of antibiotic-induced dysbiosis, we colonized newly emerged germ-free workers with either normal or tetracycline-treated gut community and analyzed the gut bacteria composition. We also treated workers with low dosage of tetracycline to evaluate its impact on honey bee gut microbiota. Our results showed that the tetracycline-treated gut community caused disruption of gut community in their receivers, while the direct exposure to the low dosage of tetracycline had no significant effect. In addition, no significant difference was observed on the mortality rate of A. mellifera workers with different treatments. These results suggest that though the residue of antibiotic treatment may not have direct effect on honey bee gut community, the gut microbiota dysbiosis caused by high dosage of antibiotic treatment has a cascade effect on the gut community of the nestmates in honeybee colonies.

20.
Sci Rep ; 10(1): 17277, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057209

ABSTRACT

As a representative bioactive component in Brazil green propolis, Artepillin C (ArtC; 3, 5-diprenyl-4-hydroxycinnamic acid) has been reported a wide variety of physiological activities including anti-tumor, anti-inflammatory, and antimicrobial activity etc. However, it seems incompatible that ArtC in vivo was characterized as low absorption efficiency and low bioavailability. In order to obtain the elucidation, we further investigated the physicochemical basis of ArtC interacting with human serum albumin (HSA) in vitro. We found a unique dynamic mode interaction between ArtC and HSA, which is completely different from other reported propolis bioactive components. Thermodynamic analysis showed that hydrophobic interactions and electrostatic forces are the main driving force. The competitive assay indicates that the binding site of ArtC with HSA is close to the Sudlow's site I. The findings of this study reveal the unique physicochemical transport mechanism of ArtC in the human body, which helps to further understand the uniqueness of the representative functional components of Brazilian green propolis in the human body.


Subject(s)
Phenylpropionates/chemistry , Propolis/chemistry , Serum Albumin, Human/chemistry , Brazil , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL