Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 458: 131900, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37385097

ABSTRACT

The current artificial intelligence (AI)-based prediction approaches of soil pollutants are inadequate in estimating the geospatial source-sink processes and striking a balance between the interpretability and accuracy, resulting in poor spatial extrapolation and generalization. In this study, we developed and tested a geographically interpretable four-dimensional AI prediction model for soil heavy metal (Cd) contents (4DGISHM) in Shaoguan city of China from 2016 to 2030. The 4DGISHM approach characterized spatio-temporal changes in source-sink processes of soil Cd by estimating spatio-temporal patterns and the effects of drivers and their interactions of soil Cd at local to regional scales using TreeExplainer-based SHAP and parallel ensemble AI algorithms. The results demonstrate that the prediction model achieved MSE and R2 values of 0.012 and 0.938, respectively, at a spatial resolution of 1 km. The predicted areas exceeding the risk control values for soil Cd across Shaoguan from 2022 to 2030 increased by 22.92% at the baseline scenario. By 2030, enterprise and transportation emissions (SHAP values 0.23 and 0.12 mg/kg, respectively) were the major drivers. The influence of driver interactions on soil Cd was marginal. Our approach surpasses the limitations of the AI "black box" by integrating spatio-temporal source-sink explanation and accuracy. This advancement enables geographically precise prediction and control of soil pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...