Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38621188

ABSTRACT

We thoroughly investigated the anharmonic lattice dynamics and microscopic mechanisms of the thermal and electronic transport characteristics in orthorhombic o-CsCu5S3 at the atomic level. Taking into account the phonon energy shifts and the wave-like tunneling phonon channel, we predict an ultralow κL of 0.42 w/mK at 300 K with an extremely weak temperature dependence following ∼T-0.33. These findings agree well with experimental values along with the parallel to the Bridgman growth direction. The κL in o-CsCu5S3 is suppressed down to the amorphous limit, primarily due to the unconventional Cu-S bonding induced by the p-d hybridization antibonding state coupled with the stochastic oscillation of Cs atoms. The nonstandard temperature dependence of κL can be traced back to the critical or dominant role of wave-like tunneling of phonon contributions in thermal transport. Moreover, the p-d hybridization of Cu(3)-S bonding results in the formation of a valence band with "pudding-mold" and high-degeneracy valleys, ensuring highly efficient electron transport characteristics. By properly adjusting the carrier concentration, excellent thermoelectric performance is achieved with a maximum thermoelectric conversion efficiency of 18.4% observed at 800 K in p-type o-CsCu5S3. Our work not only elucidates the anomalous electronic and thermal transport behavior in the copper-based chalcogenide o-CsCu5S3 but also provides insights for manipulating its thermal and electronic properties for potential thermoelectric applications.

2.
Sci Adv ; 9(40): eadh8617, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37792930

ABSTRACT

Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: [Formula: see text], [Formula: see text], and [Formula: see text]. These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.

3.
Small ; 19(40): e2301723, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282788

ABSTRACT

A photo- and electro-thermal film can convert sunlight and electricity into heat to solve icing problems. Combination of them provides an efficient strategy for all-day anti-/de-icing. However, only opaque surfaces have been reported, due to the mutual exclusiveness between photon absorption and transmission. Herein, a highly transparent and scalable solution-processed photo-electro-thermal film is reported, which exhibits an ultra-broadband selective spectrum to separate the visible light from sunlight and a countertrend suppress of emission in longer wavelength. It absorbs ≈ 85% of invisible sunlight (ultraviolet and near-infrared) for light-heat conversion, meanwhile maintains luminous transmittance > 70%. The reflection of mid-infrared leads to low emissivity (0.41), which further preserves heat on the surface for anti-/de-icing purpose. This ultra-broadband selectivity enables temperature elevation > 40 °C under 1-sun illumination and the mutual support between photo-thermal and electro-thermal effects contributes to > 50% saving of electrical consumption under weak solar exposure (0.4-sun) for maintaining unfrozen surfaces at -35 °C environment. The reverberation from photo-electro-thermal and super-hydrophobic effects illustrates a lubricating removal of grown ice in short time (< 120 s). The self-cleaning ability and the durability under mechanical, electrical, optical, and thermal stresses render the film stable for long-term usage in all-day anti-/de-icing applications.

4.
Nano Lett ; 22(17): 6888-6894, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36054095

ABSTRACT

Superdiffusive thermal transport represents a unique phenomenon in heat conduction, which is characterized by a size (L) dependence of thermal conductivity (κ) in the form of κ ∝ Lß with a constant ß between 0 and 1. Although superdiffusive thermal transport has been theoretically predicted for SiGe alloys, direct experimental evidence is still lacking. Here, we report on a systematic experimental study of the thickness-dependent thermal conductivity of Si0.4Ge0.6 thin films grown by molecular beam epitaxy. The cross-plane thermal conductivity of Si0.4Ge0.6 thin films spanning a thickness range from 20 to 1120 nm was measured in the temperature range 120-320 K via a differential three-omega method. Results show that the thermal conductivity follows a consistent κ ∝ t0.26 power law with the film thickness (t) at different temperatures, providing direct experimental evidence that alloy-scattering dominated thermal transport in SiGe is superdiffusive.

5.
Small ; 18(38): e2203035, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988138

ABSTRACT

Capacity degradation and destructive hazards are two major challenges for the operation of lithium-ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one-off self-protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self-protecting aqueous lithium-ion batteries are developed using thermos-responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos-responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos-responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3 ) and concentration (1 m) are selected in the electrolyte to achieve self-protection without sacrificing battery performance. The shut-off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self-protecting LiMn2 O4 /carbon coated LiTi2 (PO4 )3 (LMO/C-LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.

6.
Phys Chem Chem Phys ; 24(35): 20891-20900, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36043514

ABSTRACT

Zintl phase Mg3Sb2, which has ultra-low thermal conductivity, is a promising anisotropic thermoelectric material. It is worth noting that the prediction and experiment value of lattice thermal conductivity (κ) maintain a remarkable difference, troubling the development and application. Thus, we firstly included the four-phonon scattering processes effect and performed the Peierls-Boltzmann transport equation (PBTE) combined with the first-principles lattice dynamics to study the lattice thermal transport in Mg3Sb2. The results showed that our theoretically predicted κ is consistent with the experimentally measured, breaking through the limitations of the traditional calculation methods. The prominent four-phonon scatterings decreased phonon lifetime, leading to the κ of Mg3Sb2 at 300 K from 2.45 (2.58) W m-1 K-1 to 1.94 (2.19) W m-1 K-1 along the in (cross)-plane directions, respectively, and calculation accuracy increased by 20%. This study successfully explains the lattice thermal transport behind mechanism in Mg3Sb2 and implies guidance to advance the prediction accuracy of thermoelectric materials.

7.
Adv Mater ; 34(12): e2109350, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35038775

ABSTRACT

Daytime radiative cooling provides an eco-friendly solution to space cooling with zero energy consumption. Despite significant advances, most state-of-the-art radiative coolers show broadband infrared emission with low spectral selectivity, which limits their cooling temperatures, especially in hot humid regions. Here, an all-inorganic narrowband emitter comprising a solution-derived SiOx Ny layer sandwiched between a reflective substrate and a self-assembly monolayer of SiO2 microspheres is reported. It shows a high and diffusive solar reflectance (96.4%) and strong infrared-selective emittance (94.6%) with superior spectral selectivity (1.46). Remarkable subambient cooling of up to 5 °C in autumn and 2.5 °C in summer are achieved under high humidity without any solar shading or convection cover at noontime in a subtropical coastal city, Hong Kong. Owing to the all-inorganic hydrophobic structure, the emitter shows outstanding resistance to ultraviolet and water in long-term durability tests. The scalable-solution-based fabrication renders this stable high-performance emitter promising for large-scale deployment in various climates.

8.
Sci Adv ; 8(1): eabj3019, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34985956

ABSTRACT

Ionic thermoelectrics show great potential in thermal sensing owing to their ultrahigh thermopower, low cost, and ease in production. However, the lack of effective n-type ionic thermoelectric materials seriously hinders their applications. Here, we report giant and bidirectionally tunable thermopowers within an ultrawide range from −15 to +17 mV K−1 in solid ionic liquid­based ionogels. Particularly, a record high negative thermopower of −15 mV K−1 is achieved in the ternary ionogel, rendering it among the best n-type ionic thermoelectric materials under the same condition. A thermopower regulation strategy through ion doping to selectively induce ion aggregates to enhance ion-ion interactions is proposed. These selective ion interactions are found to be decisive in modulating the sign and magnitude of the thermopower in the ionogels. A prototype wearable device integrated with 12 p-n pairs is demonstrated with a total thermopower of 0.358 V K−1, showing promise for ultrasensitive thermal detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...