Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Bone Res ; 12(1): 16, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443372

ABSTRACT

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.


Subject(s)
Interoception , Osteoarthritis , Animals , Mice , Dinoprostone , Ankle , Brain , Pain
2.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37961590

ABSTRACT

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.

3.
Adv Sci (Weinh) ; 10(35): e2305042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37880864

ABSTRACT

Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.


Subject(s)
Dinoprostone , Interoception , Humans , Mice , Animals , Dinoprostone/metabolism , Neuropeptide Y/metabolism , Hypothalamus/metabolism , Neurons/metabolism
4.
Res Sq ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37790467

ABSTRACT

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone PGE2 concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of Cox2 or Pge2 in the osteoblast lineage cells or knockout Ep4 in sensory nerve blunts bone formation in response to mechanical loading. And sensory denervation also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces CREB phosphorylation in the hypothalamic ARC region to inhibit sympathetic TH expression in the PVN for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.

5.
Anal Biochem ; 646: 114638, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35278436

ABSTRACT

In this work, a novel triphenylamine derivative probe TPA-1 was designed and synthesized with a mechanism of aggregation induced emission (AIE) and twisted intramolecular charge transfer (TICT) in a microenvironment. It can be used for the detection of keratin with AIE enhanced characterization in near infrared (NIR) emission. The sensitivity and selectivity for keratin detection were also studied. In the physiological pH range, the detection of TPA-1 to keratin was not interfered by other proteins and amino acids, and had excellent specificity and photostability. TPA-1 can also be used for viscosity detection.


Subject(s)
Fluorescent Dyes , Keratins , Amines , Cytoskeletal Proteins , Viscosity
6.
Pathogens ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922476

ABSTRACT

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

7.
iScience ; 24(3): 102186, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718838

ABSTRACT

Microglia are ubiquitous central nervous system (CNS)-resident macrophages that maintain homeostasis of neural tissues and protect them from pathogen attacks. Yet, their differentiation in different compartments remains elusive. We performed single-cell RNA-seq to compare microglial subtypes in the cortex and the spinal cord. A multi-way comparative analysis was carried out on samples from C57/BL and HIV gp120 transgenic mice at two, four, and eight months of age. The results revealed overlapping but distinct microglial populations in the cortex and the spinal cord. The differential heterogeneity of microglia in these CNS regions was further suggested by their disparity of plasticity in response to life span progression and HIV-1 pathogenic protein gp120. Our findings indicate that microglia in different CNS compartments are adapted to their local environments to fulfill region-specific biological functions.

8.
Lab Invest ; 100(8): 1030-1041, 2020 08.
Article in English | MEDLINE | ID: mdl-32238906

ABSTRACT

Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Hemorrhagic Fever, Ebola/metabolism , Liver/metabolism , Talin/metabolism , Vinculin/metabolism , Animals , Cells, Cultured , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Liver/microbiology , Liver/virology , Mice, Knockout , Protein Binding , Rickettsia/physiology , Spotted Fever Group Rickettsiosis/metabolism , Spotted Fever Group Rickettsiosis/microbiology , Talin/chemistry , Vinculin/chemistry
9.
bioRxiv ; 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33398280

ABSTRACT

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection because fatal COVID-19 cases are commonly linked to respiratory failure due to ARDS. The pathologic alteration known as diffuse alveolar damage in endothelial and epithelial cells is a critical feature of acute lung injury in ARDS. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in post-mortem lung sections from COVID-19 patients and lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence (IF) assays and western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells, but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with an EPAC1-specific activator ameliorated apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

10.
Clin Pharmacol Ther ; 107(4): 978-987, 2020 04.
Article in English | MEDLINE | ID: mdl-31721173

ABSTRACT

Lower clearance of immune checkpoint inhibitors is a predictor of improved overall survival (OS) in patients with advanced cancer. We investigated a novel approach using machine learning to identify a baseline composite cytokine signature via clearance, which, in turn, could be associated with OS in advanced melanoma. Peripheral nivolumab clearance and cytokine data from patients treated with nivolumab in two phase III studies (n = 468 (pooled)) and another phase III study (n = 158) were used for machine-learning model development and validation, respectively. Random forest (Boruta) algorithm was used for feature selection and classification of nivolumab clearance. The 16 top-ranking baseline inflammatory cytokines reflecting immune-cell modulation were selected as a composite signature to predict nivolumab clearance (area under the curve (AUC) = 0.75; accuracy = 0.7). Predicted clearance (high vs. low) via the cytokine signature was significantly associated with OS across all three studies (P < 0.01), regardless of treatment (nivolumab vs. chemotherapy).


Subject(s)
Antineoplastic Agents, Immunological/blood , Cytokines/blood , Machine Learning , Melanoma/blood , Nivolumab/blood , Skin Neoplasms/blood , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Humans , Melanoma/diagnosis , Melanoma/drug therapy , Metabolic Clearance Rate/drug effects , Metabolic Clearance Rate/physiology , Nivolumab/pharmacology , Nivolumab/therapeutic use , Prognosis , Skin Neoplasms/diagnosis , Skin Neoplasms/drug therapy
11.
J Immunother Cancer ; 7(1): 348, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31829287

ABSTRACT

BACKGROUND: Although several therapeutic options for patients with renal cell carcinoma (RCC) have been approved over recent years, including immune checkpoint inhibitors, considerable need remains for molecular biomarkers to assess disease prognosis. The higher pharmacokinetic (PK) clearance of checkpoint inhibitors, such as the anti-programmed death-1 (PD-1) therapies nivolumab and pembrolizumab, has been shown to be associated with poor overall survival (OS) across several tumor types. However, determination of PK clearance requires the collection and analysis of post-treatment serum samples, limiting its utility as a prognostic biomarker. This report outlines a translational PK-pharmacodynamic (PD) methodology used to derive a baseline composite cytokine signature correlated with nivolumab clearance using data from three clinical trials in which nivolumab or everolimus was administered. METHODS: Peripheral serum cytokine (PD) and nivolumab clearance (PK) data from patients with RCC were analyzed using a PK-PD machine-learning model. Nivolumab studies CheckMate 009 (NCT01358721) and CheckMate 025 (NCT01668784) (n = 480) were used for PK-PD analysis model development and cytokine feature selection (training dataset). Validation of the model and assessment of the prognostic value of the cytokine signature was performed using data from CheckMate 010 (NCT01354431) and the everolimus comparator arm of CheckMate 025 (test dataset; n = 453). RESULTS: The PK-PD analysis found a robust association between the eight top-ranking model-selected baseline inflammatory cytokines and nivolumab clearance (area under the receiver operating characteristic curve = 0.7). The predicted clearance (high vs low) based on the cytokine signature was significantly associated with long-term OS (p < 0.01) across all three studies (training and test datasets). Furthermore, cytokines selected from the model development trials also correlated with OS of the everolimus comparator arm (p < 0.01), suggesting the prognostic nature of the composite cytokine signature for RCC. CONCLUSIONS: Here, we report a PK-PD translational approach to identify a molecular prognostic biomarker signature based on the correlation with nivolumab clearance in patients with RCC. This composite biomarker signature may provide improved prognostic accuracy of long-term clinical outcome compared with individual cytokine features and could be used to ensure the balance of patient randomization in RCC clinical trials.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Renal Cell/metabolism , Cytokines/metabolism , Kidney Neoplasms/metabolism , Nivolumab/pharmacology , Biomarkers , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Computational Biology/methods , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Machine Learning , Male , Prognosis , Reproducibility of Results
12.
Biomed Pharmacother ; 90: 705-712, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28419966

ABSTRACT

Emerging evidence suggests that tumorigenesis involves dysregulation of small nucleolar RNAs (snoRNAs). However, the role of small nucleolar RNA ACA11 (ACA11) in the development of hepatocellular carcinoma (HCC) remains unknown. Expression of ACA11 was measured using quantitative RT-PCR in 92 HCC specimens and 7 HCC cell lines. We found that ACA11 expression was significantly upregulated in HCC tissues and hepatoma cell lines. This upregulation of ACA11 in HCC tumors was significantly associated with histological grade, HBV infection, Barcelona Clinic Liver Cancer stage, portal vein tumor thrombus and poorer patient survival. Knockdown of ACA11 induced G0/G1 phase arrest and suppressed proliferation, migration and invasion of HCCLM9 and SK-Hep1 cells. Low ACA11 expression resulted in decreased HCC growth in an animal model. Conversely, transgenic expression of ACA11 induced S phase progression and enhanced proliferation, migration and invasion of Huh7 cells in vitro and in vivo. Finally, we found that ACA11 promoted cell growth, migration and invasion through activation of the PI3K/AKT pathway, subsequently increasing cyclinD1 expression and inducing EMT. These results suggest that ACA11 has an oncogenic role in HCC and may serve as a promising prognostic biomarker and therapeutic target for patients with HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Liver Neoplasms/genetics , Neoplasm Invasiveness/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Nucleolar/genetics , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Signal Transduction/genetics
13.
Radiat Res ; 185(1): 50-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26720804

ABSTRACT

Dysfunction of the intestinal epithelial barrier and leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed "tight junction" (Tj), which are disrupted after total-body irradiation (TBI). In this study, we investigated radiation-induced alterations in Tj-related proteins in the jejunum, ileum and colon of a non-human primate (NHP) model. NHPs were total-body irradiated with 6.7 and 7.4 Gy and intestines were procured at day 4, 7 and 12. Radiation exposure was found to induce significant increases in claudin-10 mRNA early (day 4) in all three gut segments and claudin-4 mRNA levels were repressed through day 12. TNF-alpha was highly induced in the jejunum and colon at early time points, but little induction was found in the ileum. Claudin-1 was induced only in the colon on day 4 postirradiation. Unlike the colon and jejunum, the ileum levels of claudin-7 were significantly downregulated through day 12 postirradiation. Western blot analysis revealed increased levels of claudin-2 on day 4 and of JAM-1 on day 7 postirradiation in all three gut segments. E-cadherin was downregulated on day 4 postirradiation in all segments, but remained reduced in the jejunum only until day 12. Taken together, these data suggest that exposure to radiation causes segment-specific alterations in the expression of Tj-related proteins. Interruption of Tjs may be a key factor contributing to injury to the intestinal mucosal barrier and increased intestinal permeability.


Subject(s)
Intestinal Absorption/physiology , Intestinal Absorption/radiation effects , Intestinal Mucosa/metabolism , Intestines/radiation effects , Radiation Dosage , Tight Junction Proteins/metabolism , Animals , Colon/metabolism , Colon/radiation effects , Dose-Response Relationship, Radiation , Female , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Humans , Ileum/metabolism , Ileum/radiation effects , Jejunum/metabolism , Jejunum/radiation effects , Macaca mulatta , Male , Organ Specificity/drug effects , Organ Specificity/physiology , Tissue Distribution
14.
BMC Genomics ; 16: 984, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26589571

ABSTRACT

BACKGROUND: Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). RESULTS: Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. CONCLUSIONS: This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption.


Subject(s)
Colon/metabolism , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Ileum/metabolism , Jejunum/metabolism , Transcriptome , Whole-Body Irradiation , Animals , Anoikis/genetics , Apoptosis/genetics , Cell Cycle , Cluster Analysis , Colon/immunology , Ileum/immunology , Immunity, Mucosal/genetics , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Jejunum/immunology , Macaca mulatta , Male , Radiation Dosage , Radiation Injuries, Experimental , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/radiation effects , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Bioorg Med Chem Lett ; 25(15): 2958-62, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048804

ABSTRACT

Molecular modeling was performed on a triazolo quinazoline lead compound to help develop a series of adenosine A2A receptor antagonists with improved hERG profile. Superposition of the lead compound onto MK-499, a benchmark hERG inhibitor, combined with pKa calculations and measurement, identified terminal fluorobenzene to be responsible for hERG activity. Docking of the lead compound into an A2A crystal structure suggested that this group is located at a flexible, spacious, and solvent-exposed opening of the binding pocket, making it possible to tolerate various functional groups. Transformation analysis (MMP, matched molecular pair) of in-house available experimental data on hERG provided suggestions for modifications in order to mitigate this liability. This led to the synthesis of a series of compounds with significantly reduced hERG activity. The strategy used in the modeling work can be applied to other medicinal chemistry programs to help improve hERG profile.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , Quinazolines/chemistry , Quinazolines/pharmacology , Receptor, Adenosine A2A/metabolism , Benzopyrans/chemistry , Benzopyrans/pharmacology , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Molecular Docking Simulation , Piperidines/chemistry , Piperidines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
16.
J Biol Chem ; 289(50): 34921-37, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25331947

ABSTRACT

The molecular mechanism of p16-mediated senescence in cisplatin-treated cancer cells is not fully understood. Here we show that cisplatin treatment of head and neck cancer cells results in nuclear transport of p16 leading to a molecular modification of NFκB. Chromatin immunoprecipitation assays show that this modification is associated with the inhibition of NFκB interacting with its DNA binding sequences, leading to decreased expression of NFκB-transcribed proteins. LCMS proteomic analysis of LAP-TAP-purified proteins from HeLa cells containing a tetracycline-inducible GFP-S peptide-NFκB expression system identified gigaxonin, an ubiquitin E3 ligase adaptor, as an NFκB-interacting protein. Immunoblotting and siRNA studies confirmed the NFκB-gigaxonin interaction and the dependence of this binding on p16-NFκB binding. Using gel shift assays, we have confirmed p16-NFκB and gigaxonin-NFκB interactions. Furthermore, we have observed increased NFκB ubiquitination with cisplatin treatment that is abolished in the absence of p16 and gigaxonin expression. Analysis of 103 primary tumors has shown that increased nuclear p16 expression correlates with enhanced survival of head and neck cancer patients (p < 0.0000542), indicating the importance of nuclear p16 expression in prognosis. Finally, p16 expression is associated with reduced cytokine expression and the presence of human papilloma virus in chemoradiation-sensitive basaloid tumors. However, the absence of p16 expression is associated with enhanced cytokine expression and the absence of human papilloma virus in aggressive tumors. These results clearly demonstrate that nuclear p16 and gigaxonin play an important role in chemosensitivity of head and neck cancers through ubiquitination of NFκB.


Subject(s)
Antineoplastic Agents/pharmacology , Cellular Senescence/drug effects , Cisplatin/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cytoskeletal Proteins/metabolism , NF-kappa B/metabolism , Ubiquitination/drug effects , Active Transport, Cell Nucleus/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/virology , Human papillomavirus 16/physiology , Humans , Prognosis
17.
Dig Dis Sci ; 59(11): 2693-703, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24848354

ABSTRACT

BACKGROUND: Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM: Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS: Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS: Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS: These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids/pharmacology , Ethanolamines/pharmacology , Mast Cells/drug effects , Mast Cells/radiation effects , Mucositis/prevention & control , Palmitic Acids/pharmacology , Radiation Injuries, Experimental/prevention & control , Amides , Animals , Cannabinoid Receptor Agonists/therapeutic use , Endocannabinoids/therapeutic use , Enzyme-Linked Immunosorbent Assay/methods , Ethanolamines/therapeutic use , Gene Expression Regulation , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Male , Mucositis/etiology , Palmitic Acids/therapeutic use , Rats , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
18.
PLoS One ; 9(4): e94732, 2014.
Article in English | MEDLINE | ID: mdl-24733352

ABSTRACT

Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase entry into cardiomyocytes.


Subject(s)
Chymases/physiology , Mitochondria/metabolism , Myocytes, Cardiac/enzymology , Wounds and Injuries/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Chymases/antagonists & inhibitors , Cytoplasm/metabolism , Dogs , Endocytosis , Ischemia/pathology , Mast Cells/enzymology , Matrix Metalloproteinase 9/metabolism , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Oligonucleotide Array Sequence Analysis , Peptide Hydrolases/chemistry , Reperfusion Injury , Transferrin/metabolism , Troponin I/blood
19.
Ther Adv Cardiovasc Dis ; 8(3): 97-118, 2014 06 01.
Article in English | MEDLINE | ID: mdl-24692245

ABSTRACT

OBJECTIVES: Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS: Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS: Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS: Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.

20.
J Med Chem ; 57(9): 3623-50, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24164628

ABSTRACT

The adenosine A2A receptor is a G-protein-coupled receptor (GPCR) that has been extensively studied during the past few decades because it offers numerous possibilities for therapeutic applications. Herein we describe adenosine A2A receptor distribution, signaling pathways, pharmacology, and molecular structure, followed by a summary and SAR discussion of the most relevant series of adenosine A2A agonists and antagonists. This review also provides an update of the A2A ligands that are undergoing or have undergone clinical studies, including the two currently marketed agonists adenosine and regadenoson.


Subject(s)
Drug Discovery , Receptor, Adenosine A2A/drug effects , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Agonists/therapeutic use , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/therapeutic use , Crystallography, X-Ray , Humans , Ligands , Protein Conformation , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...