Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2400365, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644295

ABSTRACT

LiPF6-based carbonate electrolytes have been extensively employed in commercial Li-ion batteries, but they face numerous interfacial stability challenges while applicating in high-energy-density lithium-metal batteries (LMBs). Herein, this work proposes N-succinimidyl trifluoroacetate (NST) as a multifunctional electrolyte additive to address these challenges. NST additive could optimize Li+ solvation structure and eliminate HF/H2O in the electrolyte, and preferentially be decomposed on the Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2, NCM811) to generate LiF/Li3N-rich cathode-electrolyte interphase (CEI) with high conductivity. The synergistic effect reduces the electrolyte decomposition and inhibits the transition metal (TM) dissolution. Meanwhile, NST promotes the creation of solid electrolyte interphase (SEI) rich in inorganics on the Li metal anode (LMA), which restrains the growth of Li dendrites, minimizes parasitic reactions, and fosters rapid Li+ transport. As a result, compared with the reference, the Li/LiNi0.8Co0.1Mn0.1O2 cell with 1.0 wt.% NST exhibits higher capacity retention after 200 cycles at 1C (86.4% vs. 64.8%) and better rate performance, even at 9C. In the presence of NST, the Li/Li symmetrical cell shows a super-stable cyclic performance beyond 500 h at 0.5 mA cm-2/0.5 mAh cm-2. These unique features of NST are a promising solution for addressing the interfacial deterioration issue of high-capacity Ni-rich cathodes paired with LMA.

SELECTION OF CITATIONS
SEARCH DETAIL
...