Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Brain Behav Immun ; 117: 456-470, 2024 03.
Article in English | MEDLINE | ID: mdl-38336024

ABSTRACT

Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor , Inflammation , Leptin , Obesity/complications
2.
Behav Brain Res ; 463: 114885, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38296202

ABSTRACT

The main cause of second-generation antipsychotic (SGA)-induced obesity is considered due to the antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling. It is reported that 5-HT2cR interacted with GHSR1a, however it is unknown whether one of the SGA olanzapine alters the 5-HT2cR/GHSR1a interaction, affecting orexigenic neuropeptide signalling in the hypothalamus. We found that olanzapine treatment increased average energy intake and body weight gain in mice; olanzapine treatment also increased orexigenic neuropeptide (NPY) and GHSR1a signaling molecules, pAMPK, UCP2, FOXO1 and pCREB levels in the hypothalamus. By using confocal fluorescence resonance energy transfer (FRET) technology, we found that 5-HT2cR interacted/dimerised with the GHSR1a in the hypothalamic neurons. As 5-HT2cR antagonist, both olanzapine and S242084 decreased the interaction between 5-HT2cR and GHSR1a and activated GHSR1a signaling. The 5-HT2cR agonist lorcaserin counteracted olanzapine-induced attenuation of interaction between 5-HT2cR and GHSR1a and inhibited activation of GHSR1a signalling and NPY production. These findings suggest that 5-HT2cR antagonistic effect of olanzapine in inhibition of the interaction of 5-HT2cR and GHSR1a, activation GHSR1a downstream signaling and increasing hypothalamic NPY, which may be the important neuronal molecular mechanism underlying olanzapine-induced obesity and target for prevention metabolic side effects of antipsychotic management in psychiatric disorders.


Subject(s)
Antipsychotic Agents , Neuropeptides , Animals , Mice , Antipsychotic Agents/adverse effects , Hypothalamus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Obesity/chemically induced , Obesity/metabolism , Olanzapine/adverse effects
3.
Neural Regen Res ; 19(9): 2081-2088, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227539

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00042/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinson's disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction. Gastrointestinal dysfunction can precede the onset of motor symptoms by several years. Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson's disease, whether it plays a causal role in motor dysfunction, and the mechanism underlying this potential effect, remain unknown. CCAAT/enhancer binding protein ß/asparagine endopeptidase (C/EBPß/AEP) signaling, activated by bacterial endotoxin, can promote α-synuclein transcription, thereby contributing to Parkinson's disease pathology. In this study, we aimed to investigate the role of the gut microbiota in C/EBPß/AEP signaling, α-synuclein-related pathology, and motor symptoms using a rotenone-induced mouse model of Parkinson's disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation. We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier, as well as activation of the C/EBP/AEP pathway, α-synuclein aggregation, and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits. However, treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics. Importantly, we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits, intestinal inflammation, and endotoxemia. Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits, intestinal inflammation, endotoxemia, and intestinal barrier impairment. These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits, C/EBPß/AEP signaling activation, and α-synuclein-related pathology in a rotenone-induced mouse model of Parkinson's disease. Additionally, our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson's disease.

4.
Brain Behav Immun ; 115: 565-587, 2024 01.
Article in English | MEDLINE | ID: mdl-37981012

ABSTRACT

Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.


Subject(s)
Clostridium butyricum , Cognitive Dysfunction , Neurodegenerative Diseases , Probiotics , Humans , Animals , Mice , Brain-Gut Axis , Dysbiosis/complications , Mice, Obese , Obesity/complications , Cognitive Dysfunction/etiology , Probiotics/pharmacology
5.
Aging Cell ; 22(11): e14003, 2023 11.
Article in English | MEDLINE | ID: mdl-37828862

ABSTRACT

The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.


Subject(s)
Antipsychotic Agents , Animals , Humans , Olanzapine/pharmacology , Antipsychotic Agents/adverse effects , Aging , Mitophagy , Mitochondria , Caenorhabditis elegans
6.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36787221

ABSTRACT

Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Mice , Animals , Humans , Quinolinic Acid/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Butyrates , Obesity/drug therapy , Obesity/genetics , Obesity/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Inflammation/complications
7.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Article in English | MEDLINE | ID: mdl-36382553

ABSTRACT

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Butyrates/pharmacology , Butyrates/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Diet , Diet, High-Fat/adverse effects , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
8.
Mitochondrial DNA B Resour ; 7(8): 1534-1535, 2022.
Article in English | MEDLINE | ID: mdl-36046108

ABSTRACT

Prunus campanulata 'Fugui' is newly bred cultivar. Here, we report its complete chloroplast genome. The length of the P. campanulata 'Fugui' chloroplast genome is 157,948 bp, with a large single-copy region of 85,948 bp, a small single-copy region of 19,128 bp and a pair of inverted repeat regions of 26,436 bp each. The genome contains 90 protein-coding genes, 65 transfer RNA genes and 9 ribosomal RNA genes. In addition, the genome contains 67 simple sequence repeats. Phylogenetic analysis revealed that P. campanulata 'Fugui' is genetically related to previously reported P. campanulata.

9.
Microbiome ; 9(1): 223, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34758889

ABSTRACT

BACKGROUND: Cognitive impairment, an increasing mental health issue, is a core feature of the aging brain and neurodegenerative diseases. Industrialized nations especially, have experienced a marked decrease in dietary fiber intake, but the potential mechanism linking low fiber intake and cognitive impairment is poorly understood. Emerging research reported that the diversity of gut microbiota in Western populations is significantly reduced. However, it is unknown whether a fiber-deficient diet (which alters gut microbiota) could impair cognition and brain functional elements through the gut-brain axis. RESULTS: In this study, a mouse model of long-term (15 weeks) dietary fiber deficiency (FD) was used to mimic a sustained low fiber intake in humans. We found that FD mice showed impaired cognition, including deficits in object location memory, temporal order memory, and the ability to perform daily living activities. The hippocampal synaptic ultrastructure was damaged in FD mice, characterized by widened synaptic clefts and thinned postsynaptic densities. A hippocampal proteomic analysis further identified a deficit of CaMKIId and its associated synaptic proteins (including GAP43 and SV2C) in the FD mice, along with neuroinflammation and microglial engulfment of synapses. The FD mice also exhibited gut microbiota dysbiosis (decreased Bacteroidetes and increased Proteobacteria), which was significantly associated with the cognitive deficits. Of note, a rapid differentiating microbiota change was observed in the mice with a short-term FD diet (7 days) before cognitive impairment, highlighting a possible causal impact of the gut microbiota profile on cognitive outcomes. Moreover, the FD diet compromised the intestinal barrier and reduced short-chain fatty acid (SCFA) production. We exploit these findings for SCFA receptor knockout mice and oral SCFA supplementation that verified SCFA playing a critical role linking the altered gut microbiota and cognitive impairment. CONCLUSIONS: This study, for the first time, reports that a fiber-deprived diet leads to cognitive impairment through altering the gut microbiota-hippocampal axis, which is pathologically distinct from normal brain aging. These findings alert the adverse impact of dietary fiber deficiency on brain function, and highlight an increase in fiber intake as a nutritional strategy to reduce the risk of developing diet-associated cognitive decline and neurodegenerative diseases. Video Abstract.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Animals , Cognitive Dysfunction/etiology , Diet/adverse effects , Gastrointestinal Microbiome/physiology , Hippocampus , Mice , Mice, Inbred C57BL , Microglia , Proteomics
10.
Neurotoxicology ; 87: 231-242, 2021 12.
Article in English | MEDLINE | ID: mdl-34688786

ABSTRACT

BACKGROUND: Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS: We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS: MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS: Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION: These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.


Subject(s)
Autophagy/drug effects , Haloperidol/toxicity , Mitochondria/drug effects , Resveratrol/pharmacology , Autophagosomes/drug effects , Blotting, Western , Haloperidol/antagonists & inhibitors , Humans , Lysosomes/drug effects , Microscopy, Electron, Transmission , Neoplastic Cells, Circulating , Neurons/drug effects , Neurons/metabolism , Reactive Oxygen Species/metabolism
11.
J Ethnopharmacol ; 279: 114340, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34171397

ABSTRACT

BACKGROUND: Cassia mimosoides Linn (CMD) is a traditional Chinese herb that clears liver heat and dampness. It has been widely administered in clinical practice to treat jaundice associated with damp-heat pathogen and obesity. Emodin (EMO) is a major bioactive constituent of CMD that has apparent therapeutic efficacy against obesity and fatty liver. Here, we investigated the protective effects and underlying mechanisms of EMO against high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). OBJECTIVE: We aimed to investigate whether EMO activates farnesoid X receptor (FXR) signaling to alleviate HFD-induced NAFLD. MATERIALS AND METHODS: In vivo assays included serum biochemical indices tests, histopathology, western blotting, and qRT-PCR to evaluate the effects of EMO on glucose and lipid metabolism disorders in wild type (WT) and FXR knockout mice maintained on an HFD. In vitro experiments included intracellular triglyceride (TG) level measurement and Oil Red O staining to assess the capacity of EMO to remove lipids induced by oleic acid and palmitic acid in WT and FXR knockout mouse primary hepatocytes (MPHs). We also detected mRNA expression of FXR signaling genes in MPHs. RESULTS: After HFD administration, body weight and serum lipid and inflammation levels were dramatically increased in the WT mice. The animals also presented with impaired glucose tolerance, insulin resistance, and antioxidant capacity, liver tissue attenuation, and pathological injury. EMO remarkably reversed the foregoing changes in HFD-induced mice. EMO improved HFD-induced lipid accumulation, insulin resistance, inflammation, and oxidative stress in a dose-dependent manner in WT mice by inhibiting FXR expression. EMO also significantly repressed TG hyperaccumulation by upregulating FXR expression in MPHs. However, it did not improve lipid accumulation, insulin sensitivity, or glucose tolerance in HFD-fed FXR knockout mice. CONCLUSIONS: The present study demonstrated that EMO alleviates HFD-induced NAFLD by activating FXR signaling which improves lipid accumulation, insulin resistance, inflammation, and oxidative stress.


Subject(s)
Cassia/chemistry , Emodin/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Emodin/administration & dosage , Emodin/isolation & purification , Glucose/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Inflammation/drug therapy , Inflammation/pathology , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/physiopathology , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Triglycerides/blood
12.
Front Nutr ; 8: 803691, 2021.
Article in English | MEDLINE | ID: mdl-35127789

ABSTRACT

The microbiota-gut-liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation-insulin (NFκB-PTP1B-Akt-GSK3ß) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota-gut-liver axis.

13.
Front Neurosci ; 14: 384, 2020.
Article in English | MEDLINE | ID: mdl-32477045

ABSTRACT

A high-fat (HF) diet is a major predisposing factor of neuroinflammation and cognitive deficits. Recently, changes in the gut microbiota have been associated with neuroinflammation and cognitive impairment, through the gut-brain axis. Curdlan, a bacterial polysaccharide widely used as food additive, has the potential to alter the composition of the microbiota and improve the gut-brain axis. However, the effects of curdlan against HF diet-induced neuroinflammation and cognitive decline have not been investigated. We aimed to evaluate the neuroprotective effect and mechanism of dietary curdlan supplementation against the obesity-associated cognitive decline observed in mice fed a HF diet. C57Bl/6J male mice were fed with either a control, HF, or HF with curdlan supplementation diets for 7 days (acute) or 15 weeks (chronic). We found that acute curdlan supplementation prevented the gut microbial composition shift induced by HF diet. Chronic curdlan supplementation prevented cognitive declines induced by HF diet. In addition, curdlan protected against the HF diet-induced abnormities in colonic permeability, hyperendotoxemia, and colonic inflammation. Furthermore, in the prefrontal cortex (PFC) and hippocampus, curdlan mitigated microgliosis, neuroinflammation, and synaptic impairments induced by a HF diet. Thus, curdlan-as a food additive and prebiotic-can prevent cognitive deficits induced by HF diet via the colon-brain axis.

14.
J Neuroinflammation ; 17(1): 77, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32127019

ABSTRACT

BACKGROUND: Western pattern diets induce neuroinflammation and impair cognitive behavior in humans and animals. Neuroinflammation and cognitive impairment have been associated with microbiota dysbiosis, through the gut-brain axis. Furthermore, microbiota-accessible carbohydrates (MACs) found in dietary fiber are important in shaping the microbial ecosystem and have the potential to improve the gut-brain-axis. However, the effects of MACs on neuroinflammation and cognition in an obese condition have not yet been investigated. The present study aimed to evaluate the effect of MACs on the microbiota-gut-brain axis and cognitive function in obese mice induced by a high-fat and fiber deficient (HF-FD) diet. METHODS: C57Bl/6 J male mice were fed with either a control HF-FD or a HF-MAC diet for 15 weeks. Moreover, an additional group was fed with the HF-MAC diet in combination with an antibiotic cocktail (HF-MAC + AB). Following the 15-week treatment, cognitive behavior was investigated; blood, cecum content, colon, and brain samples were collected to determine metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. RESULTS: We report MACs supplementation prevented HF-FD-induced cognitive impairment in nesting building and temporal order memory tests. MACs prevented gut microbiota dysbiosis, including increasing richness, α-diversity and composition shift, especially in Bacteroidetes and its lower taxa. Furthermore, MACs increased colonic mucus thickness, tight junction protein expression, reduced endotoxemia, and decreased colonic and systemic inflammation. In the hippocampus, MACs suppressed HF-FD-induced neuroglia activation and inflammation, improved insulin IRS-pAKT-pGSK3ß-pTau synapse signaling, in addition to the synaptic ultrastructure and associated proteins. Furthermore, MACs' effects on improving colon-cognitive parameters were eliminated by wide spectrum antibiotic microbiota ablation. CONCLUSIONS: These results suggest that MACs improve cognitive impairments via the gut microbiota-brain axis induced by the consumption of an HF-FD. Supplemental MACs to combat obesity-related gut and brain dysfunction offer a promising approach to prevent neurodegenerative diseases associated with Westernized dietary patterns and obesity.


Subject(s)
Cognitive Dysfunction/etiology , Diet, High-Fat/adverse effects , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Obesity/complications , Animals , Carbohydrate Metabolism , Carbohydrates , Dietary Supplements , Male , Mice , Mice, Inbred C57BL , Neuroimmunomodulation/drug effects
15.
J Agric Food Chem ; 68(14): 4215-4226, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32181656

ABSTRACT

Ginsenoside Rg2 has been previously reported to reduce glucose production and adipogenesis in adipose tissue. However, the effects of ginsenosides Rg2 on hepatic lipid metabolism remain vacant. In this study, we found that ginsenoside Rg2 treatment significantly attenuated oleic acid and palmitic acid (OA&PA)-induced intracellular lipid deposition and oxidative stress in mouse primary hepatocytes. C57BL/6J mice that are fed with a high-fat diet (HFD) and treated with ginsenosides Rg2 displayed decreased body weight, reversed hepatic steatosis, and improved glucose tolerance and insulin sensitivity. Ginsenoside Rg2 administration significantly ameliorated HFD-induced hepatic oxidative stress and apoptosis. Moreover, Ginsenoside Rg2 had a good affinity with Sirtuin1 (SIRT1) and regulated its expression in vivo and in vitro. Deficiency of SIRT1 eliminated the therapeutic effect of ginsenoside Rg2 on lipid accumulation and overproduction of reactive oxygen species (ROS) in OA&PA-induced mice primary hepatocytes. Ginsenoside Rg2 treatment failed to alter the lipid and glucose disorder in hepatic SIRT1 deficient mice feeding on HFD. SIRT1 deficiency dissolves the therapeutic effect of ginsenoside Rg2 on oxidative stress and hepatocyte apoptosis induced by HFD. In summary, ginsenoside Rg2 plays a therapeutic role in HFD-induced hepatosteatosis of mice by decreasing the lipogenesis process and improving antioxidant capacity in an SIRT1-dependent manner.


Subject(s)
Diet, High-Fat/adverse effects , Ginsenosides/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Sirtuin 1/metabolism , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Gene Expression Regulation/drug effects , Insulin Resistance , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced , Oleic Acid/metabolism , Oxidative Stress/drug effects , Palmitic Acid/metabolism
16.
Inflammation ; 43(4): 1323-1336, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32170601

ABSTRACT

Trained immunity has been recently identified in innate immune cells, which undergo long-term epigenetic and metabolic reprogramming after exposure to pathogens for protection from secondary infections. (1, 3)/(1, 6)-ß-glucan derived from fungi can induce potent trained immunity; however, the effect of (1, 3)/(1, 4)-ß-glucan (rich in dietary fiber oat) on trained immunity has not been reported. In the present study, two cell culture systems for trained immunity induction were validated in monocytes/macrophages from mouse bone myeloid and human THP-1 cells exposed to positive inducers of trained immunity, including ß-glucan from Trametes versicolor or human-oxidized low-density lipoprotein. Primed with oat ß-glucan, the mRNA expression and production of TNF-α and IL-6 significantly increased in response to re-stimulation of TLR-4/2 ligands. Moreover, the expression of several key enzymes in glycolytic pathway and tricarboxylic acid cycle was significantly upregulated. In addition, inhibiting these enzymes decreased the production of TNF-α and IL-6 boosted by oat ß-glucan. These results show that oat ß-glucan induces trained immunity through metabolic reprogramming. This provides important evidence that dietary fiber can maintain the long-term responsiveness of the innate immune system, which may benefit for prevention of infectious diseases or cancers.


Subject(s)
Cellular Reprogramming/physiology , Immunity, Innate/physiology , Macrophages/physiology , Monocytes/physiology , beta-Glucans/pharmacology , Animals , Cellular Reprogramming/drug effects , Humans , Immunity, Innate/drug effects , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Monocytes/drug effects
17.
Psychoneuroendocrinology ; 114: 104594, 2020 04.
Article in English | MEDLINE | ID: mdl-32007669

ABSTRACT

Second generation antipsychotics, particularly olanzapine, induce severe obesity, which is associated with their antagonistic effect on the histamine H1 receptor (H1R). We have previously demonstrated that oral administration of olanzapine increases the concentration of neuropeptide Y (NPY) in the hypothalamus of rats, accompanied by hyperphagia and weight gain. However, it is unclear if the increased NPY after olanzapine administration is due to its direct effect on hypothalamic neurons and its H1R antagonistic property. In the present study, we showed that with an inverted U-shape dose-response curve, olanzapine increased NPY expression in the NPY-GFP hypothalamic neurons; however, this was not the case in the hypothalamic neurons of H1R knockout mice. Olanzapine inhibited the interaction of H1R and GHSR1a (ghrelin receptor) in the primary mouse hypothalamic neurons and NPY-GFP neurons examined by confocal fluorescence resonance energy transfer (FRET) technology. Furthermore, an H1R agonist, FMPH inhibited olanzapine activation of GHSR1a downstream signaling pAMPK and transcription factors of NPY (pFOXO1 and pCREB) in the hypothalamic NPY-GFP cell. However, an olanzapine analogue (E-Olan) with lower affinity to H1R presented negligible enhancement of pCREB within the nucleus of NPY neurons. These findings suggest that the H1R antagonist property of olanzapine inhibits the interaction of H1R and GHSR1a, activates GHSR1a downstream signaling pAMPK-FOXO1/pCREB and increases hypothalamic NPY: this could be one of the important molecular mechanisms of H1R antagonism of olanzapine-induced obesity in antipsychotic management of psychiatric disorders.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Antipsychotic Agents/pharmacology , Hypothalamus/drug effects , Neuropeptide Y/drug effects , Olanzapine/pharmacology , Receptors, Ghrelin/drug effects , Receptors, Histamine H1/drug effects , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Histamine H1 Antagonists/pharmacology , Mice , Mice, Knockout , Neurons/drug effects , Weight Gain/drug effects
18.
Curr Protein Pept Sci ; 20(7): 705-712, 2019.
Article in English | MEDLINE | ID: mdl-30678620

ABSTRACT

Lactation is a critical phase for brain function development. New dietary experiences of mouse caused by weaning can regulate brain development and function, increase their response to food and environment, and eventually give rise to corresponding behavioral changes. Changes in weaning time induce the alteration of brain tissues morphology and molecular characteristics, glial cell activity and behaviors in the offspring. In addition, it is also sensitive to the intervention of environment and drugs during this period. That is to say, the study focused on brain development and function based on mouse weaning is critical to demonstrate the underlying pathogenesis of neuropsychiatric diseases and find new drug targets. This article mainly focuses on the developmental differentiation of the brain during lactation, especially during weaning in mice.


Subject(s)
Brain/growth & development , Weaning , Animals , Behavior, Animal , Brain/cytology , Lactation , Mice , Neuroglia/cytology , Neurons/cytology
19.
Mar Pollut Bull ; 109(2): 691-9, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27368927

ABSTRACT

Contrary to the global trend, the area of mangrove in Guangdong Province, southern China, has been increasing over the last two decades. Currently, three exotic mangrove species have been introduced for large-scale afforestation since 1985. A reassessment of the overall status of the mangrove species, habitat change, population of introduced species, was conducted through a comprehensive literature review as well as field investigations covering 96 sites. The success of conservation efforts is also evaluated. Upstream and high intertidal habitats are more vulnerable than downstream and lower intertidal ones, with habitat alteration being the biggest threats. Five mangrove species have narrow distributional extents with small populations, which could incur regional extinction. With the introduced species having naturalized at 42 sites, their role in mangrove management needs to be reconsidered. These findings collectively suggest a need to manage latent species loss and habitat degradation beyond the apparent increase in mangrove area and protection.


Subject(s)
Conservation of Natural Resources , Plants , Wetlands , China , Ecosystem , Environmental Monitoring , Introduced Species
SELECTION OF CITATIONS
SEARCH DETAIL
...