Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
J Transl Med ; 22(1): 468, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760813

ABSTRACT

BACKGROUND: Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD: The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT: Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION: The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.


Subject(s)
Metaplasia , Humans , Air , Models, Biological , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Stomach/pathology , Organoids/pathology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Transcriptome/genetics , Intestines/pathology
2.
Int Immunopharmacol ; 134: 112177, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696908

ABSTRACT

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.

3.
J Adv Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609049

ABSTRACT

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

4.
Front Microbiol ; 15: 1287077, 2024.
Article in English | MEDLINE | ID: mdl-38322318

ABSTRACT

The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.

5.
Biochem Biophys Res Commun ; 696: 149515, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241815

ABSTRACT

ZNF131 is a Zinc finger protein that acts as a transcription factor with oncogenic effects in multiple cancers. In this study, we aimed to explore the alternative splicing profile of ZNF131 in hepatocellular carcinoma (HCC), its regulatory effects on cell-cycle progression, and the downstream effectors. ZNF131 transcriptional profile and HCC survival analysis were conducted using data from the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Cancer (LIHC) dataset. Chromatin immunoprecipitation (ChIP)-qPCR and dual-luciferase reporter assays were utilized to explore transcriptional regulation. CCK-8, colony formation and xenograft tumor models were used to study HCC tumor growth. Results showed that ZNF131 isoform 2 is upregulated in HCC tissues and its upregulation was associated with unfavorable overall survival (OS) and progression-free interval (PFI). Knockdown of endogenous ZNF131 inhibits HCC cell growth and induces G2/M cell-cycle arrest. ZNF131 binds to the SMC4 promoter by interacting with ZBTB33 and the ZBTB33 recognizing motif. ZNF131 transcriptionally activates SMC4 expression in HCC cells. The tumor-suppressive effects of ZNF131 shRNA could be partially reversed by enforced SMC4 overexpression. In summary, this study highlights the ZNF131/ZBTB33/SMC4 axis as a driver of pathological cell cycling and proliferation in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , Transcription Factors/metabolism , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism
6.
Immunol Res ; 72(2): 320-330, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37999823

ABSTRACT

Food allergy (FA) is a common immune disorder that involves dysfunctional immune regulation. More remedies for restoring immune regulation are necessary. Semaphorin 3 A (Sema3a) is a secreted protein of the semaphorin family, which plays a role in immune responses at all stages. The objective of this study is to gain an understanding of how Sema3a can restore the immune regulatory abilities of type 1 regulatory T cells (Tr1 cells). In this study, blood samples were taken from patients with FA. Tr1 cells were purified from blood samples using flow cytometry cell sorting, using LAG3 and CD49b as surface markers. RNA sequencing was employed to examine the characteristics of Tr1 cells. We observed an exaggerated increase in ER stress in peripheral Tr1 cells of FA patients. Enforced expression of spliced X-box protein-1 (XBP1s, one of the key molecules in ER stress) resulted in suppression of interleukin (IL)-10 expression in CD4+ T cells. Eukaryotic initiation factor 2a (eIF2a) mediated the effects of XBP1 on suppressing IL-10 expression in Tr1 cells. The use of Sema3a resulted in a decrease in ER stress, and an increase in IL-10 expression in Tr1 cells of FA patients. Sema3a administration reduced experimental FA by increasing the number of Tr1 cells. In conclusion, IL-10 expression in Tr1 cells is disturbed by ER stress. Sema3a treatment restores the expression of IL-10 and the immunosuppressive capability of Tr1 cells.

7.
Heliyon ; 9(12): e22677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107267

ABSTRACT

Dioctyl phthalate, commonly known as bis(2-ethylhexyl) phthalate (DEHP), is a widely used plasticizer in various industries and has been shown to directly or indirectly impact human health. However, there is a lack of comprehensive studies evaluating the potential health risks associated with DEHP accumulation in different organs across various age groups. This study aimed to assess the effects of low (50 mg/kg·bw) and high (500 mg/kg·bw) doses of DEHP on five different organs in mice at young (4-week-old) and aged (76-week-old) life stages. Our findings revealed that both low and high doses of DEHP exposure led to significant dose-dependent inflammation in the liver, spleen, and kidney. Furthermore, regardless of age, DEHP exposure resulted in elevated activity of alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in the liver, as well as increased levels of creatinine (Cr) and urea in the kidney. Moreover, analysis of the fecal microbiota using 16S rRNA sequencing demonstrated that DEHP exposure disrupted the homeostasis of the gut microbiota, characterized by an increased abundance of pathogenic bacteria such as Desulfovibrio and Muribaculum, and a decreased abundance of beneficial bacteria like Lactobacillus. This study provides compelling evidence that DEHP at different concentrations can induce damage to multiple organs and disrupt gut microbiota composition. These findings lay the groundwork for further investigations into DEHP toxicity in various human organs, contributing to a better understanding of the potential health risks associated with DEHP exposure.

8.
Aging (Albany NY) ; 15(22): 13558-13578, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38016120

ABSTRACT

Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway.


Subject(s)
Stomach Neoplasms , Tumor Suppressor Protein p53 , Mice , Humans , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Dimerization , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cisplatin/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
9.
PeerJ ; 11: e15990, 2023.
Article in English | MEDLINE | ID: mdl-37701824

ABSTRACT

Scientists have made great efforts to understand the evolution of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) to provide crucial information to public health experts on strategies to control this viral pathogen. The pandemic of the coronavirus disease that began in 2019, COVID-19, lasted nearly three years, and nearly all countries have set different epidemic prevention policies for this virus. The continuous evolution of SARS-CoV-2 alters its pathogenicity and infectivity in human hosts, thus the policy and treatments have been continually adjusted. Based on our previous study on the dynamics of binding ability prediction between the COVID-19 spike protein and human ACE2, the present study mined over 10 million sequences and epidemiological data of SARS-CoV-2 during 2020-2022 to understand the evolutionary path of SARS-CoV-2. We analyzed and predicted the mutation rates of the whole genome and main proteins of SARS-CoV-2 from different populations to understand the adaptive relationship between humans and COVID-19. Our study identified a correlation of the mutation rates from each protein of SARS-CoV-2 and various human populations. Overall, this analysis provides a scientific basis for developing data-driven strategies to confront human pathogens.


Subject(s)
COVID-19 , Physicians , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Mutation Rate
10.
Front Nutr ; 10: 1121203, 2023.
Article in English | MEDLINE | ID: mdl-37545590

ABSTRACT

Background/aims: Some studies showed that probiotics could improve the composition and structure of gut microbiota. Changes in the gut microbiota may alter bile acid (BAs) composition and kinetics, improving non-alcoholic fatty liver disease (NAFLD). However, it still needs to be clarified how probiotics improve both the metabolism of BAs and NAFLD. This study aimed to reveal the regulatory mechanisms of cholesterol-lowering (CL) probiotics on NAFLD from aspects involved in BA metabolism in FXR gene knockout (FXR-/-) mice. Methods: FXR-/- male mice were randomly divided into three groups based on different interventions for 16 weeks, including normal diet (ND), high-fat diet (HFD), and probiotic intervention in the HFD (HFD+P) group. 16s rDNA sequencing and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were utilized to analyze the changes in gut microbiota and fecal bile acids in mice. Results: We found that the intervention of the CL probiotics improved liver lipid deposition and function in HFD-induced NAFLD mice by decreasing the levels of total cholesterol (TC; p = 0.002) and triglyceride (TG; p = 0.001) in serum, as well as suppressing liver inflammation, such as interleukin-1 beta (IL-1ß; p = 0.002) and tumor necrosis factor-alpha (TNF-α; p < 0.0001). 16S rDNA sequencing and metabolomic analyses showed that probiotics effectively reduced the abundance of harmful gut microbiota, such as Firmicutes (p = 0.005), while concomitantly increasing the abundance of beneficial gut microbiota in NAFLD mice, such as Actinobacteriota (p = 0.378), to improve NAFLD. Compared with the ND group, consuming an HFD elevated the levels of total BAs (p = 0.0002), primary BAs (p = 0.017), and secondary BAs (p = 0.0001) in mice feces, while the intervention with probiotics significantly reduced the increase in the levels of fecal total bile acids (p = 0.013) and secondary bile acids (p = 0.017) induced by HFD. Conclusion: The CL probiotics were found to improve liver function, restore microbiota balance, correct an abnormal change in the composition and content of fecal bile acids, and repair the damaged intestinal mucosal barrier in mice with NAFLD, ultimately ameliorating the condition. These results suggested that CL probiotics may be a promising and health-friendly treatment option for NAFLD.

11.
Front Cell Infect Microbiol ; 13: 1196084, 2023.
Article in English | MEDLINE | ID: mdl-37621875

ABSTRACT

Purpose: To determine the role of Lactobacillus strains and their combinations in inhibiting the colonization of H. pylori and gastric mucosa inflammation. Methods: Human gastric adenocarcinoma AGS cells were incubated with H. pylori and six probiotic strains (Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37, Lacticaseibacillus rhamnosus Lr-32, and L. rhamnosus GG) and the adhesion ability of H. pylori in different combinations was evaluated by fluorescence microscopy and urease activity assay. Male C57BL/6 mice were randomly divided into five groups (uninfected, H. pylori, H. pylori+NCFM, H. pylori+Lp-115, and H. pylori+NCFM+Lp-115) and treated with two lactobacilli strains (NCFM and Lp-115) for six weeks. H. pylori colonization and tissue inflammation statuses were determined by rapid urease test, Hematoxylin-Eosin (HE) staining, immunohistochemistry, and qRT-PCR and ELISA. Results: L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, L. paracasei Lpc-37, L. rhamnosus Lr-32, and L. rhamnosus GG reduced H. pylori adhesion and inflammation caused by H. pylori infection in AGS cells and mice. Among all probiotics L. acidophilus NCFM and L. plantarum, Lp-115 showed significant effects on the H. pylori eradication and reduction of inflammation in-vitro and in-vivo. Compared with the H. pylori infection group, the mRNA and protein expression levels of IL-8 and TNF-α in the six Lactobacillus intervention groups were significantly reduced. The changes in the urease activity (ureA and ureB) for 1-7h in each group showed that L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, and L. rhamnosus GG effectively reduced the colonization of H. pylori. We observed a higher ratio of lymphocyte and plasma cell infiltration into the lamina propria of the gastric mucosa and neutrophil infiltration in H. pylori+NCFM+Lp-115 mice. The infiltration of inflammatory cells in lamina propria of the gastric mucosa was reduced in the H. pylori+NCFM+Lp-115 group. Additionally, the expression of IFN-γ was decreased significantly in the NCFM and Lp-115 treated C57BL/6 mice. Conclusions: L. acidophilus NCFM and L. plantarum Lp-115 can reduce the adhesion of H. pylori and inhibit the gastric inflammatory response caused by H. pylori infection.


Subject(s)
Gastritis , Helicobacter pylori , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Lactobacillus acidophilus , Urease , Disease Models, Animal , Gastritis/prevention & control , Inflammation , Lactobacillus
12.
Front Pharmacol ; 14: 1192210, 2023.
Article in English | MEDLINE | ID: mdl-37266156

ABSTRACT

Objective: Colorectal cancer (CRC) is a common cancer that cannot be detected at an early stage and is a major challenge in oncology research. Studies have shown that vitamin D3 has some anti-cancer and preventive effects on colorectal cancer, but the exact anti-cancer mechanism is not clear. We applied the relevant research methods of network pharmacology to speculate and validate the possible potential pharmacological mechanisms of vitamin D3 for the prevention of colorectal cancer, and to provide more theoretical support for the clinical anticancer effects of vitamin D3. Methods: The relevant targets for vitamin D3 and CRC were obtained from the database of drug and disease targets, respectively. The target of vitamin D3 and the target of colorectal cancer were taken to intersect to obtain common targets. Then, the PPI network was constructed. In addition, the pathways of drug-disease interactions were predicted by GO and KEGG enrichment analysis. Finally, the obtained results were verified to ensure the reliability of the experiments. Results: 51 targets of vitamin D3 for the prevention of colorectal cancer were obtained. The 10 core targets were obtained from the PPI network. The 10 core targets include: ALB, SRC, MMP9, PPARG, HSP90AA1, IGF1, EGFR, MAPK1, MAP2K1 and IGF1R. The core targets were further validated by molecular docking and animal experiments. The results suggest that vitamin D3 plays a key role in the prevention of CRC through core targets, PI3K-Akt pathway, HIF-1 pathway, and FoxO pathway. Conclusion: This study will provide more theoretical support for vitamin D3 to reduce the incidence of CRC and is important to explore more pharmacological effects of vitamin D3.

13.
Animal Model Exp Med ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202925

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS: PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS: Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION: These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.

15.
Front Mol Biosci ; 10: 1097694, 2023.
Article in English | MEDLINE | ID: mdl-37006616

ABSTRACT

Long noncoding RNAs (lncRNAs) possess the potential for therapeutic targeting to treat many disorders, including cancers. Several RNA-based therapeutics (ASOs and small interfering RNAs) have gained FDA approval over the past decade. And with their potent effects, lncRNA-based therapeutics are of emerging significance. One important lncRNA target is LINC-PINT, with its universalized functions and relationship with the famous tumor suppressor gene TP53. Establishing clinical relevance, much like p53, the tumor suppressor activity of LINC-PINT is implicated in cancer progression. Moreover, several molecular targets of LINC-PINT are directly or indirectly used in routine clinical practice. We further associate LINC-PINT with immune responses in colon adenocarcinoma, proposing the potential utility of LINC-PINT as a novel biomarker of immune checkpoint inhibitors. Collectively, current evidence suggests LINC-PINT can be considered for use as a diagnostic/prognostic marker for cancer and several other diseases.

16.
Front Pharmacol ; 14: 1102581, 2023.
Article in English | MEDLINE | ID: mdl-36874006

ABSTRACT

Objective: Curcumin is a plant polyphenol extracted from the Chinese herb turmeric. It was found that curcumin has good anti-cancer properties in a variety of cancers, but the exact mechanism is not clear. Based on the network pharmacology and molecular docking to deeply investigate the molecular mechanism of curcumin for the treatment of colon cancer, it provides a new research direction for the treatment of colon cancer. Methods: Curcumin-related targets were collected using PharmMapper, SwissTargetPrediction, Targetnet and SuperPred. Colon cancer related targets were obtained using OMIM, DisGeNET, GeneCards and GEO databases. Drug-disease intersection targets were obtained via Venny 2.1.0. GO and KEGG enrichment analysis of drug-disease common targets were performed using DAVID. Construct PPI network graphs of intersecting targets using STRING database as well as Cytoscape 3.9.0 and filter core targets. Molecular docking via AutoDockTools 1.5.7. The core targets were further analyzed by GEPIA, HPA, cBioPortal and TIMER databases. Results: A total of 73 potential targets of curcumin for the treatment of colon cancer were obtained. GO function enrichment analysis yielded 256 entries, including BP(Biological Progress):166, CC(celluar component):36 and MF(Molecular Function):54. The KEGG pathway enrichment analysis yielded 34 signaling pathways, mainly involved in Metabolic pathways, Nucleotide metabolism, Nitrogen metabolism, Drug metabolism - other enzymes, Pathways in cancer,PI3K-Akt signaling pathway, etc. CDK2, HSP90AA1, AURKB, CCNA2, TYMS, CHEK1, AURKA, DNMT1, TOP2A, and TK1 were identified as core targets by Cytoscape 3.9.0. Molecular docking results showed that the binding energies of curcumin to the core targets were all less than 0 kJ-mol-1, suggesting that curcumin binds spontaneously to the core targets. These results were further validated in terms of mRNA expression levels, protein expression levels and immune infiltration. Conclusion: Based on network pharmacology and molecular docking initially revealed that curcumin exerts its therapeutic effects on colon cancer with multi-target, multi-pathway. Curcumin may exert anticancer effects by binding to core targets. Curcumin may interfere with colon cancer cell proliferation and apoptosis by regulating signal transduction pathways such as PI3K-Akt signaling pathway,IL-17 signaling pathway, Cell cycle. This will deepen and enrich our understanding of the potential mechanism of curcumin against colon cancer and provide a theoretical basis for subsequent studies.

17.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985851

ABSTRACT

Mo(001) and Mo(011) layers with thickness d = 4-400 nm are sputter-deposited onto MgO(001) and α-Al2O3(112¯0) substrates and their resistivity is measured in situ and ex situ at room temperature and 77 K in order to quantify the resistivity size effect. Both Mo(001) and Mo(011) layers are epitaxial single crystals and exhibit a resistivity increase with decreasing d due to electron surface scattering that is well described by the classical Fuchs and Sondheimer model. Data fitting yields room temperature effective electron mean free paths λ*= 14.4 ± 0.3 and 11.7 ± 0.3 nm, respectively, indicating an anisotropy with a smaller resistivity size effect for the Mo(011) orientation. This is attributed to a smaller average Fermi velocity component perpendicular to (011) surfaces, causing less surface scattering and a suppressed resistivity size effect. First-principles electronic structure calculations in combination with Boltzmann transport simulations predict an orientation dependent transport with a more pronounced resistivity increase for Mo(001) than Mo(011). This is in agreement with the measurements, confirming the effect of the Fermi surface shape on the thin-film resistivity. The predicted anisotropy λ001*/λ011* = 1.57 is in reasonable agreement with 1.66 and 1.23 measured at 77 and 295 K. The overall results indicate that the resistivity size effect in Mo is relatively small, with a measured product of the bulk resistivity times the effective electron mean free path ρoλ* = (7.7 ± 0.3) and (6.2 ± 0.2) × 10-16 Ωm2 for Mo(001) and Mo(011) layers. The latter value is in excellent agreement with the first-principles-predicted ρoλ = 5.99 × 10-16 Ωm2 and is 10% and 40% smaller than the reported measured ρoλ for Cu and W, respectively, indicating the promise of Mo as an alternate conductor for narrow interconnects.

18.
Oncol Res ; 32(2): 283-296, 2023.
Article in English | MEDLINE | ID: mdl-38186577

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) plays an essential role in cellular metabolism, mitochondrial homeostasis, inflammation, and senescence. However, the role of NAD+-regulated genes, including coding and long non-coding genes in cancer development is poorly understood. We constructed a prediction model based on the expression level of NAD+ metabolism-related genes (NMRGs). Furthermore, we validated the expression of NMRGs in gastric cancer (GC) tissues and cell lines; additionally, ß-nicotinamide mononucleotide (NMN), a precursor of NAD+, was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation, cell cycle, apoptosis, and senescence-associated secretory phenotype (SASP). A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures, and patients with high-risk scores had a poor prognosis. Some immune checkpoint genes were upregulated in the high-risk group. In addition, cell cycle, epigenetics, and senescence were significantly downregulated in the high-risk group. Notably, we found that the levels of immune cell infiltration, including CD8 T cells, CD4 naïve T cells, CD4 memory-activated T cells, B memory cells, and naïve B cells, were significantly associated with risk scores. Furthermore, the treatment of NMN showed increased proliferation of AGS and MKN45 cells. In addition, the expression of SASP factors (IL6, IL8, IL10, TGF-ß, and TNF-α) was significantly decreased after NMN treatment. We conclude that the lncRNAs associated with NAD+ metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , NAD , Stomach Neoplasms/genetics , Prognosis , Biomarkers
19.
Front Pharmacol ; 14: 1338260, 2023.
Article in English | MEDLINE | ID: mdl-38259281

ABSTRACT

Objective: Vitamin D3 has the general properties of a lipid-soluble vitamin, but is also an active steroid hormone that can regulate the proliferation, apoptosis and differentiation of many tumor cells, and exerts anticancer activity against numerous malignancies. However, the mechanism underlying the effects of vitamin D3 on tumors is not fully understood. Here, we used network pharmacology and in vitro experimental approaches to explore the mechanism of vitamin D3 activity in the context of gastric cancer. Methods: The Targetnet, SuperPred, SwissTargetPrediction, and PharmMapper databases were screened for potential drug-related targets, while we used data from the PharmGKB, Drugbank, OMIM, DisGeNET, CTD, and GeneCards databases to identify potential targets associated with gastric cancer. Disease-drug crossover genes were obtained by constructing Venn diagrams. Gene ontology and Kyoto Encyclopedia of Genomes (KEGG) enrichment analyses of crossover genes were conducted and STRING was used to generate protein interaction networks and identify core targets. CCK-8 experiments were performed and apoptosis detected to assess the effect of vitamin D3 on gastric cancer cells. Western blotting was applied to detect p53/AMPK/mTOR signaling, as well as autophagy-, cell cycle-, and apoptosis-related proteins. Results: A total of 485 targets of vitamin D3 activity were obtained and 1200 gastric cancer disease-related targets discovered. Further, 60 potential targets for vitamin D3 in gastric cancer treatment were identified. KEGG analysis indicated that potential targets were mainly involved in the cell cycle, HIF-1 signaling, and the AMPK pathway, among other pathways. These findings were validated using cellular experiments, which demonstrated that the viability of AGS and SGC-7901 cells was impeded by vitamin D3. Further, vitamin D3 promoted apoptosis and inhibited the cell cycle in those cell lines, as well as activating the p53/AMPK/mTOR pathway, which promotes autophagy and inhibits tumor development. Conclusion: Our network pharmacological analyses provide preliminarily data supporting a role for vitamin D3 in promoting autophagy and apoptosis in gastric cancer cells, and in activating the p53/AMPK/mTOR pathway, which inhibits gastric cancer cell proliferation. Our findings demonstrate the molecular mechanism underlying the effect of vitamin D3 in cure of gastric cancer.

20.
Toxicology ; 482: 153356, 2022 12.
Article in English | MEDLINE | ID: mdl-36283488

ABSTRACT

Dysfunction of immune regulation plays a crucial role in the pathogenesis of many immune disorders in the body. The underlying mechanism is still not completely understood. Environmental pollution contributes to immune de-regulation. 3-methyl-4-nitrophenol (MNP) is one of the major environmental pollutants. This study aims to investigate the role of MNP in compromising immune regulatory functions in the intestine. A food allergy (FA) mouse model was established using ovalbumin (OVA) as the specific antigen. The activities of regulatory T cells in the mouse intestine were evaluated by flow cytometry and enzyme-linked immunosorbent assay. We found that MNP reduced the CD4+ Foxp3+ Treg frequency, increased Th17 cells, and converted Tregs to Th17 cells in the intestine. MNP induced the expression of IL-6 in regulatory T cells (Tregs). Estrogen receptor (ER) mediated the effects of MNP on promoting IL-6 expression in Tregs. The IL-6 in synergy with transforming growth factor (TGF)-ß to convert Tregs to Th17 cells. The concomitant exposure of MNP and OVA induced FA like response in mice. Modulation of the ER-STAT3-IL-6 signal pathway attenuated mouse FA response. In summary, MNP, an environmental pollutant, acts as an immunoadjuvant for developing FA. By activation of the estrogen receptor, MNP induces Tregs to express IL-6. IL-6 in synergy with TGF-ß converts Tregs to Th17 cells.


Subject(s)
Environmental Pollutants , T-Lymphocytes, Regulatory , Mice , Animals , Nitrophenols/toxicity , Nitrophenols/metabolism , Environmental Pollutants/metabolism , Receptors, Estrogen/metabolism , Interleukin-6/metabolism , Th17 Cells , Ovalbumin , Transforming Growth Factor beta/metabolism , Intestines , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...