Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Chem Biol ; 18(12): 1341-1350, 2022 12.
Article in English | MEDLINE | ID: mdl-36229685

ABSTRACT

Patients with castration-resistant prostate cancer inevitably acquire resistance to antiandrogen therapies in part because of androgen receptor (AR) mutations or splice variants enabling restored AR signaling. Here we show that ligand-activated AR can form transcriptionally active condensates. Both structured and unstructured regions of AR contribute to the effective phase separation of AR and disordered N-terminal domain plays a predominant role. AR liquid-liquid phase separation behaviors faithfully report transcriptional activity and antiandrogen efficacy. Antiandrogens can promote phase separation and transcriptional activity of AR-resistant mutants in a ligand-independent manner. We conducted a phase-separation-based phenotypic screen and identified ET516 that specifically disrupts AR condensates, effectively suppresses AR transcriptional activity and inhibits the proliferation and tumor growth of prostate cancer cells expressing AR-resistant mutants. Our results demonstrate liquid-liquid phase separation as an emerging mechanism underlying drug resistance and show that targeting phase separation may provide a feasible approach for drug discovery.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/genetics , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Ligands , Drug Resistance, Neoplasm , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology
2.
Cell ; 183(2): 490-502.e18, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33002410

ABSTRACT

The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , A549 Cells , Animals , Child , Child, Preschool , Female , Gain of Function Mutation/genetics , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , MAP Kinase Signaling System/physiology , Male , Mice , Mouse Embryonic Stem Cells , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction , src Homology Domains/genetics
4.
Bioorg Med Chem Lett ; 27(23): 5262-5266, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29079473

ABSTRACT

The discovery and optimization of various of indane amides as mutant IDH1 inhibitors via structure-based rational design were reported. The optimal compounds demonstrated both potent inhibition in IDH1R132H enzymatic activity and 2HG production in IDH1 mutant HT1080 cell line, favorable PK properties and great selectivity against IDH1wt and IDH2R140Q.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indans/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indans/chemical synthesis , Indans/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice , Microsomes/chemistry , Microsomes/metabolism , Models, Molecular , Molecular Conformation , Mutation , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL